装药结构中纵向气隙对炸药爆轰输出性能的影响

郭文灿 张志强 邓顺益 黄文斌 裴红波

郭文灿, 张志强, 邓顺益, 黄文斌, 裴红波. 装药结构中纵向气隙对炸药爆轰输出性能的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0165
引用本文: 郭文灿, 张志强, 邓顺益, 黄文斌, 裴红波. 装药结构中纵向气隙对炸药爆轰输出性能的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0165
GUO Wencan, ZHANG Zhiqiang, DENG Shunyi, HUANG Wenbin, PEI Hongbo. Influence of longitudinal air gaps within charge structure on the detonation performance of explosives[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0165
Citation: GUO Wencan, ZHANG Zhiqiang, DENG Shunyi, HUANG Wenbin, PEI Hongbo. Influence of longitudinal air gaps within charge structure on the detonation performance of explosives[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0165

装药结构中纵向气隙对炸药爆轰输出性能的影响

doi: 10.11883/bzycj-2024-0165
详细信息
    作者简介:

    郭文灿(1984- ),男,博士,副研究员,guowencan1984@163.com

    通讯作者:

    裴红波(1987- ),男,博士,副研究员,hongbo2751@sina.com

  • 中图分类号: O381

Influence of longitudinal air gaps within charge structure on the detonation performance of explosives

  • 摘要: 为阐明装药结构中纵向气隙对炸药爆轰输出性能的影响,基于激光照明结合超高速分幅成像技术研究了HMX基炸药爆轰正向驱动及滑移驱动下钢板的变形及损伤情况,并通过密排光纤测速技术测量了钢板的运动速度,实现了气隙影响下钢板附带损失的量化表征。结果表明,纵向气隙宽度为0.05、0.10和0.20 mm时,爆轰正向驱动下,钢板的运动模式发生了显著变化,中心点的运动趋势由阶跃式上升转变为斜波式上升,且爆轰波的超前时间大幅度增加,钢板有明显的变形和破坏击穿现象;爆轰滑移驱动下,钢板的运动模式和爆轰波的超前时间基本不变,钢板没有出现明显的变形和击穿现象。爆轰正向驱动下,前驱冲击波和两侧爆轰波构成的楔形波系是造成底部钢板破坏击穿的关键;爆轰滑移驱动下,前驱冲击波和爆轰波作用于侧面钢板的动量分量较小,不会造成明显的变形和损伤。
  • 图  1  炸药样品装配关系示意图和实验装置实拍图

    Figure  1.  Schematic diagram of the explosive sample assembly and photographs of the experimental setup

    图  2  分幅成像的布局

    Figure  2.  Schematic layout of the framing imaging setup

    图  3  密排PDV测试的示意图

    Figure  3.  Schematic of multi-point PDV array measurement

    图  4  不同气隙宽度下钢板的变形损伤情况

    Figure  4.  Deformation and damage characteristics of steel plates under different air gap widths

    图  5  不同气隙宽度下底部钢板的速度-时间曲线

    Figure  5.  Velocity-time characteristics of the bottom steel plate for various air gap widths

    图  6  不同气隙宽度下侧面钢板的速度-时间曲线

    Figure  6.  Velocity-time characteristics of the side steel plate for various air gap widths

    图  7  不同气隙宽度下底部钢板的爆轰波超前时间

    Figure  7.  Detonation wave lead time in the bottom steel plate for various air gap widths.

    图  8  不同气隙宽度下侧面钢板的爆轰波超前时间

    Figure  8.  Detonation wave lead time in the side steel plate for various air gap widths

    图  9  不同气隙宽度下钢板的位移变形情况

    Figure  9.  Displacement and deformation characteristics of steel plates under different air gap widths

    图  10  爆轰波与气隙相互作用示意图

    Figure  10.  Illustration of the interaction mechanism between detonation waves and air gaps

    图  11  不同气隙宽度下底板钢板的速度及加速度

    Figure  11.  Velocity and acceleration characteristics of the bottom steel plate for various air gap widths

    图  12  不同气隙宽度下侧面钢板的速度及加速度

    Figure  12.  Velocity and acceleration characteristics of the side steel plate for various air gap widths

  • [1] DUBNOV L V, KHOTINA L D. Channel effect mechanism in the detonation of condensed explosives [J]. Combustion, Explosion and Shock Waves, 1966, 2(4): 59–63. DOI: 10.1007/BF01261518.
    [2] BJARNHOLT G, SMEDBERG U. On detonation driven air shocks in the air gap between a charge and its confinement [C]//Proceedings of the 8th Symposium (International) on Detonation. Albuquerque, NM, 1985: 1069.
    [3] SOUERS P C, AULT S, AVARA R, et al. Air gap effects in LX-17 [J]. Propellants, Explosives, Pyrotechnics, 2006, 31(4): 294–298. DOI: 10.1002/prep.200600040.
    [4] DAVIS W C, HILL L G. Joints, cracks, holes and gaps in detonating explosives [C]//Proceedings of the 12th Symposium (International) on Detonation. San Diego, CA, 2002: 220.
    [5] TANGUAY V, HIGGINS A J. The channel effect: coupling of the detonation and the precursor shock wave by precompression of the explosive [J]. Journal of Applied Physics, 2004, 96(9): 4894–4902. DOI: 10.1063/1.1787913.
    [6] BRAILOVSKY I, SIVASHINSKY G. Precursors in two-phase detonation: an elementary model for the channel effect [J]. Combustion Theory and Modelling, 2014, 18(1): 117–147. DOI: 10.1080/13647830.2013.870354.
    [7] BRAILOVSKY I, SIVASHINSKY G. Precursors in two-phase detonation: occurrence of a contact discontinuity [J]. Combustion Theory and Modelling, 2015, 19(6): 833–855. DOI: 10.1080/13647830.2015.1105385.
    [8] MADER C L. LASL Phermex data, Vol. III [M]. Berkeley: University of California Press, 1980: 30–31.
  • 加载中
图(12)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  8
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-28
  • 修回日期:  2024-09-28
  • 网络出版日期:  2025-01-09

目录

    /

    返回文章
    返回