• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

近爆条件下高强钢板的抗爆性能与几何参数影响规律研究

王宇相 张国凯 刘黎旺 吴玉欣 刘举 姜龙

王宇相, 张国凯, 刘黎旺, 吴玉欣, 刘举, 姜龙. 近爆条件下高强钢板的抗爆性能与几何参数影响规律研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0177
引用本文: 王宇相, 张国凯, 刘黎旺, 吴玉欣, 刘举, 姜龙. 近爆条件下高强钢板的抗爆性能与几何参数影响规律研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0177
WANG Yuxiang, ZHANG Guokai, LIU Liwang, WU Yuxin, LIU Ju, JIANG Long. Investigation on geometric parameters effect and blast resistance of high-strength steel plates under near-field explosions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0177
Citation: WANG Yuxiang, ZHANG Guokai, LIU Liwang, WU Yuxin, LIU Ju, JIANG Long. Investigation on geometric parameters effect and blast resistance of high-strength steel plates under near-field explosions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0177

近爆条件下高强钢板的抗爆性能与几何参数影响规律研究

doi: 10.11883/bzycj-2024-0177
基金项目: 国家自然科学基金 (52278504);江苏省自然科学基金 (BK20220141);
详细信息
    作者简介:

    王宇相(1999- ),男,硕士研究生,wangyuxiang@njust.edu.cn

    通讯作者:

    张国凯(1988- ),男,博士,教授,博士生导师,gkzhang@njust.edu.cn

  • 中图分类号: O383

Investigation on geometric parameters effect and blast resistance of high-strength steel plates under near-field explosions

  • 摘要: 为研究近爆载荷作用下高强钢板的抗爆性能,首先利用ANSYS/LS-DYNA软件开展了高强钢材料的SHPB冲击试验模拟,标定了表征高强钢动态本构的Johnson-Cook模型参数;基于该参数开展了84组近爆条件下高强钢板的爆炸模拟,系统分析了爆炸冲击波与钢板的相互作用过程,阐明了钢板的宽度及厚度等几何参数对其变形特征与破坏模式的影响规律。此外,通过汇总分析数值模拟结果,进一步提供了近爆作用下高强钢板最大变形位移的预测模型。研究表明:Johnson-Cook模型能有效模拟高强钢在高应变率下的力学行为;在冲击波传播方面,高强钢板厚度的增加会削弱冲击波穿透钢板后的影响范围;针对不同几何参数的高强钢板,近距离爆炸荷载会造成花瓣形破口、小破口以及大变形3种毁伤模式,且钢板厚度是决定其破坏模式的重要因素;在大变形毁伤模式下,钢板厚度的增加或边长的减小会提高其抗爆能力,故宽厚比与钢板抗爆性能之间呈现正相关的关系。
  • 图  1  高强钢板爆炸试验数值模拟仿真模型

    Figure  1.  High-strength steel plate explosion test numerical simulation model

    图  2  SHPB系统示意图

    Figure  2.  Schematic of the SHPB system

    图  3  SHPB试验模拟结果

    Figure  3.  SHPB test simulation results

    图  4  网格依赖性分析

    Figure  4.  Mesh dependency analysis

    图  5  冲击波在空气中传播的过程(a=500 mm)

    Figure  5.  Process of shockwave propagation in air (a=500 mm)

    图  6  冲击波穿过钢板的过程 (a=500 mm)

    Figure  6.  Process of the shock wave passing through the steel plate (a=500 mm)

    图  7  所有工况受载后位移云图

    Figure  7.  Cloud image of displacement under load under all conditions

    图  8  不同边长钢板的整体位移

    Figure  8.  Overall displacement curve for steel plates of various widths

    图  9  不同尺寸高强钢板的位移时程变化云图

    Figure  9.  Time-history displacement nephogram of high strength steel plate with different size

    图  10  不同厚度高强钢板的中心点位移时程曲线

    Figure  10.  Time history of the center point displacement with different thicknesses of the high strength steel plate

    图  11  高强钢板中心点最大位移随厚度变化

    Figure  11.  Maximum displacement at the center point varies with thickness

    图  12  不同边长度高强钢板中心点位移时程曲线

    Figure  12.  High strength steel plate center point displacement time history curve

    图  13  中心点最大位移与边长的关系

    Figure  13.  Relation between maximum displacement at the center point and the edge length

    图  14  不同宽厚比下中心点最大位移

    Figure  14.  Maximum displacement at the center point under different width-to-thickness ratios

    表  1  TNT炸药材料参数

    Table  1.   TNT material parameters

    ρTNT/(kg·m−3)DCJ/(m·s−1)pCJ/GPaAJWL/GPaBJWL/GPaR1R2wETNT/(J·mm−3)
    16306930213713.2314.150.950.356
     注:ρTNT为炸药的密度,DCJpCJ分别为CJ爆轰阶段的速度和压力.
    下载: 导出CSV

    表  2  S690的J-C模型参数

    Table  2.   J-C Model Parameters for S690

    A/MPaB/MPaCn
    7224000.210.57
    下载: 导出CSV

    表  3  仿真工况设置

    Table  3.   Simulation condition configurations

    工况a/mmm/kg爆距/mmδ/mm
    1~145000.51004、6、8、10、12、
    14、16、18、20、
    22、24、26、28、30
    15~286000.5100
    29~428000.5100
    43~5610000.5100
    57~7012000.5100
    71~8415000.5100
    下载: 导出CSV

    表  4  各工况高强钢板的宽厚比和最大位移

    Table  4.   Width-thickness ratio and maximum displacement of high-strength steel plate

    工况 a/mm δ/mm a/δ 位移/mm 工况 a/mm δ/mm a/δ 位移/mm 工况 a/mm δ/mm a/δ 位移/mm
    1 500 4 125.00 / 29 800 4 200.00 / 57 1200 4 300.00 /
    2 6 83.33 / 30 6 133.33 / 58 6 200.00 /
    3 8 62.50 45.00 31 8 100.00 50.00 59 8 150.00 56.60
    4 10 50.00 35.70 32 10 80.00 42.30 60 10 120.00 48.10
    5 12 41.67 28.50 33 12 66.67 34.50 61 12 100.00 39.30
    6 14 35.71 21.70 34 14 57.14 28.00 62 14 85.71 33.00
    7 16 31.25 16.50 35 16 50.00 23.00 63 16 75.00 27.60
    8 18 27.78 12.40 36 18 44.44 17.60 64 18 66.67 22.70
    9 20 25.00 9.78 37 20 40.00 13.00 65 20 60.00 18.20
    10 22 22.73 7.79 38 22 36.36 10.10 66 22 54.55 14.10
    11 24 20.83 6.30 39 24 33.33 8.40 67 24 50.00 11.91
    12 26 19.23 5.17 40 26 30.77 7.03 68 26 46.15 10.10
    13 28 17.86 4.29 41 28 28.57 5.85 69 28 42.86 8.20
    14 30 16.67 3.60 42 30 26.67 4.95 70 30 40.00 6.90
    15 600 4 150.00 / 43 1000 4 250.00 / 71 1500 4 375.00 /
    16 6 100.00 / 44 6 166.67 / 72 6 250.00 /
    17 8 75.00 46.60 45 8 125.00 53.00 73 8 187.50 63.10
    18 600 10 60.00 38.10 46 1000 10 100.00 44.30 74 1500 10 150.00 52.00
    19 12 50.00 30.10 47 12 83.33 37.30 75 12 125.00 42.40
    20 14 42.86 23.40 48 14 71.43 30.60 76 14 107.14 35.70
    21 16 37.50 18.00 49 16 62.50 25.00 77 16 93.75 29.30
    22 18 33.33 13.40 50 18 55.56 20.00 78 18 83.33 24.20
    23 20 30.00 10.60 51 20 50.00 15.20 79 20 75.00 20.10
    24 22 27.27 8.55 52 22 45.45 11.90 80 22 68.18 16.30
    25 24 25.00 6.95 53 24 41.67 9.60 81 24 62.50 13.20
    26 26 23.08 5.76 54 26 38.46 8.21 82 26 57.69 11.20
    27 28 21.43 4.87 55 28 35.71 7.20 83 28 53.57 9.10
    28 30 20.00 4.07 56 30 33.33 6.10 84 30 50.00 8.20
    下载: 导出CSV
  • [1] WANG X, LIU C, ZHOU Z Q, et al. In-situ EBSD investigation of plastic damage in a 316 austenitic stainless steel and its molecular dynamics (MD) simulations [J]. Journal of Materials Research and Technology, 2021, 13: 823–833. DOI: 10.1016/j.jmrt.2021.05.010.
    [2] WANG X, CHEN J G, SU G F, et al. Application of electromagnetism method to characterize the degradation behavior in structural mild steel within the elastic range [J]. Construction and Building Materials, 2020, 241: 118011. DOI: 10.1016/j.conbuildmat.2020.118011.
    [3] LIU J, WU C Q, LI C G, et al. Blast testing of high performance geopolymer composite walls reinforced with steel wire mesh and aluminium foam [J]. Construction and Building Materials, 2019, 197: 533–547. DOI: 10.1016/j.conbuildmat.2018.11.207.
    [4] AL-THAIRY H. A modified single degree of freedom method for the analysis of building steel columns subjected to explosion induced blast load [J]. International Journal of Impact Engineering, 2016, 94: 120–133. DOI: 10.1016/j.ijimpeng.2016.04.007.
    [5] SUN Y X, WANG X, JI C, et al. Experimental investigation on anti-penetration performance of polyurea-coated ASTM1045 steel plate subjected to projectile impact [J]. Defence Technology, 2021, 17(4): 1496–1513. DOI: 10.1016/j.dt.2020.08.005.
    [6] CHEN A Q, LOUCA L A, ELGHAZOULI A Y. Behaviour of cylindrical steel drums under blast loading conditions [J]. International Journal of Impact Engineering, 2016, 88: 39–53. DOI: 10.1016/j.ijimpeng.2015.09.007.
    [7] ZHOU Z Q, CHEN J G, YUAN H Y, et al. The role of Al reaction rate in the damage effect and energy output of RDX-based aluminized explosives in concrete [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(3): 319–326. DOI: 10.1002/prep.201800093.
    [8] WU T Y, JIANG N, ZHOU C B, et al. Evaluate of anti-explosion for high-pressure gas steel pipeline subjected to ground explosion [J]. Journal of Constructional Steel Research, 2021, 177: 106429. DOI: 10.1016/j.jcsr.2020.106429.
    [9] 汪维, 刘光昆, 赵强, 等. 近爆作用下方形板表面爆炸载荷分布函数研究 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 144–152. DOI: 10.1360/SSPMA-2019-0188.

    WANG W, LIU G K, ZHAO Q, et al. Study on the distribution function of blast loads on the surface of a square plate under near-explosion [J]. SCIENCE CHINA: Physics Mechanics and Astronomy, 2020, 50(2): 144–152. DOI: 10.1360/SSPMA-2019-0188.
    [10] GAN L, ZONG Z H, CHEN Z J, et al. Differences in responses of square steel plates exposed to blast loads generated by cubic and spherical explosives [J]. Thin-Walled Structures, 2023, 182: 110332. DOI: 10.1016/j.tws.2022.110332.
    [11] 施龙, 李建平, 王川. 爆炸作用下板壳结构响应特性研究 [J]. 爆破器材, 2014, 43(5): 30–34. DOI: 10.3969/j.issn.1001-8352.2014.05.007.

    SHI L, LI J P, WANG C. Response characteristic research of shell structures under blasting [J]. Explosive Materials, 2014, 43(5): 30–34. DOI: 10.3969/j.issn.1001-8352.2014.05.007.
    [12] 杨锐, 汪泉, 谢守冬, 等. 负压爆炸载荷作用下固支钢板变形研究 [J]. 高压物理学报, 2023, 37(5): 054102. DOI: 10.11858/gywlxb.20230685.

    YANG R, WANG Q, XIE S D, et al. Deformation of fixed support steel plate under explosion load in negative pressure environment [J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054102. DOI: 10.11858/gywlxb.20230685.
    [13] WIERZBICKI T, NURICK G N. Large deformation of thin plates under localised impulsive loading [J]. International Journal of Impact Engineering, 1996, 18(7/8): 899–918. DOI: 10.1016/S0734-743X(96)00027-9.
    [14] ZHOU Z Q, DU Z C, ZHANG Y L, et al. Microscopic defects formation and dynamic mechanical response analysis of Q345 steel plate subjected to explosive load [J]. Defence Technology, 2024, 32: 430–442. DOI: 10.1016/j.dt.2023.03.025.
    [15] 赵春风, 张利, 李晓杰. 近场爆炸下波纹双钢板混凝土组合墙板的损伤破坏及抗爆性能 [J]. 高压物理学报, 2024, 38(1): 014102. DOI: 10.11858/gywlxb.20230727.

    ZHAO C F, ZHANG L, LI X J. Damage failure and anti-blast performance of concrete-infilled double steel corrugated-plate wall under near field explosion [J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014102. DOI: 10.11858/gywlxb.20230727.
    [16] GAN L, ZONG Z H, LIN J, et al. Influence of U-shaped stiffeners on the blast-resistance performance of steel plates [J]. Journal of Constructional Steel Research, 2022, 188: 107046. DOI: 10.1016/j.jcsr.2021.107046.
    [17] 侯晓萌, 曹少俊, 郑文忠. 爆炸荷载作用下钢板-RPC抗爆门动态响应分析 [J]. 建筑结构学报, 2016, 37(S1): 219–226,232. DOI: 10.14006/j.jzjgxb.2016.S1.031.

    HOU X M, CAO S J, ZHENG W Z. Analysis on dynamic response of steel-RPC anti-explosion doors under blast load [J]. Journal of Building Structures, 2016, 37(S1): 219–226,232. DOI: 10.14006/j.jzjgxb.2016.S1.031.
    [18] SHI G, HU F X, SHI Y J. Recent research advances of high strength steel structures and codification of design specification in China [J]. International Journal of Steel Structures, 2014, 14(4): 873–887. DOI: 10.1007/s13296-014-1218-7.
    [19] 王蕾. S690QL高强度钢材在不同应力状态下的断裂破坏研究 [J]. 机械工程师, 2019(8): 100–102.

    WANG L. Fracture failure investigation of S690QL high strength steel under different stress states [J]. Mechanical Engineer, 2019(8): 100–102.
    [20] ALABI A A, MOORE P L, WROBEL L C, et al. Tensile behaviour of S690QL and S960QL under high strain rate [J]. Journal of Constructional Steel Research, 2018, 150: 570–580. DOI: 10.1016/j.jcsr.2018.08.009.
    [21] CAI W Y, LI G Q. Experimental study on post-fire mechanical properties and fracture behavior of Q690 steel [J]. Thin-Walled Structures, 2023, 193: 111253. DOI: 10.1016/j.tws.2023.111253.
    [22] 张秀华, 张唯佳, 张宇. Q460高强钢柱在近爆荷载作用下的动力响应研究 [J]. 振动与冲击, 2022, 41(3): 107–114,147. DOI: 10.13465/j.cnki.jvs.2022.03.013.

    ZHANG X H, ZHANG W J, ZHANG Y. Dynamic response of Q460 high strength steel column under near explosion load [J]. Journal of Vibration and Shock, 2022, 41(3): 107–114,147. DOI: 10.13465/j.cnki.jvs.2022.03.013.
    [23] LANGDON G S, LEE W C, LOUCA L A. The influence of material type on the response of plates to air-blast loading [J]. International Journal of Impact Engineering, 2015, 78: 150–160. DOI: 10.1016/j.ijimpeng.2014.12.008.
    [24] 常笑康, 罗本永, 陈长海, 等. 近距空爆载荷作用下高韧钢的抗爆性能及影响因素研究 [J]. 高压物理学报, 2024, 38(5): 054103. DOI: 10.11858/gywlxb.20240732.

    CHANG X K, LUO B Y, CHEN C H, et al. Study on the blast-resistant performance and influence factors of high-toughness steel subjected to close-range air-blasts [J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054103. DOI: 10.11858/gywlxb.20240732.
    [25] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [26] YANG X Q, YANG H, ZHANG S M. Rate-dependent constitutive models of S690 high-strength structural steel [J]. Construction and Building Materials, 2019, 198: 597–607. DOI: 10.1016/j.conbuildmat.2018.11.285.
    [27] KOCKS U F, MECKING H. Physics and phenomenology of strain hardening: the FCC case [J]. Progress in Materials Science, 2003, 48(3): 171–273. DOI: 10.1016/S0079-6425(02)00003-8.
    [28] NURICK G N, SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads—an experimental study [J]. International Journal of Impact Engineering, 1996, 18(1): 99–116. DOI: 10.1016/0734-743X(95)00018-2.
    [29] 陈长海, 朱锡, 侯海量, 等. 近距空爆载荷作用下固支方板的变形及破坏模式 [J]. 爆炸与冲击, 2012, 32(4): 368–375. DOI: 10.11883/1001-1455(2012)04-0368-08.

    CHEN C H, ZHU X, HOU H L, et al. Deformation and failure modes of clamped square plates under close-range air blast loads [J]. Explosion and Shock Waves, 2012, 32(4): 368–375. DOI: 10.11883/1001-1455(2012)04-0368-08.
    [30] 李旭东, 尹建平, 赵鹏铎, 等. 固支钢板在爆炸与均布载荷耦合作用下的破坏 [J]. 兵器装备工程学报, 2021, 42(4): 26–30,36. DOI: 10.11809/bqzbgcxb2021.04.005.

    LI X D, YIN J P, ZHAO P D, et al. Failure of clamped steel plates under local explosion and uniformly distributed load [J]. Journal of Ordnance Equipment Engineering, 2021, 42(4): 26–30,36. DOI: 10.11809//bqzbgcxb2021.04.005. DOI: 10.11809/bqzbgcxb2021.04.005.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  4
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-12
  • 修回日期:  2024-10-06
  • 网络出版日期:  2025-02-21

目录

    /

    返回文章
    返回