Analysis of mechanical performance of lattice steel columns under two consecutive lateral impacts
-
摘要: 格构柱是工程结构中的主要承重构件,为评估格构柱在冲击载荷下的防护性能并优化其设计,对格构柱沿不同冲击方向进行了二次冲击实验,并与相同总能量下的单次冲击试验进行了对比,分析了格构柱在冲击荷载下的受力和变形特点。随后,基于实验验证的有限元模型对足尺格构柱进行连续二次冲击模拟,得到了总能量不变时遭受2次连续冲击的格构柱的动力响应,分析了不同能量分配对冲击力、残余位移和残余动能的影响。结果表明:总能量相同时,单次冲击作用下格构柱的位移大于二次冲击,数值模拟中,最优能量分配可使沿不同方向冲击的构件残余位移减少约12%;当格构柱第1次受到的冲击能占比越大,第2次受到的冲击能占比越小时,格构柱吸收的总能量越小。最终,基于试验与数值模拟结果,提出受损柱能承受第2次冲击的最大冲击速度的计算方法。Abstract: The evaluation of protective performance and optimization of the design of building structures under impact loading is a key issue of concern in the fields of national defense, civil engineering, and other military and civilian use. Lattice columns are often used as the main load-bearing components in engineering structures and are inevitably impacted by other unintentional loads under engineering service environments. In this paper, 1:2 scaled-down secondary impact experiments were carried out on lattice columns along different impact directions with the same impact energy each time and compared with single-impact lattice columns under the same total energy to analyze the force and deformation characteristics of the lattice columns under the impact loads. Then, based on the experimentally verified finite element model, a continuous secondary impact simulation was carried out on the foot-foot lattice column. The dynamic response of the lattice column subjected to two consecutive impacts with the same total energy was obtained, and the effects of different energy distributions on the impact force, residual displacement, and residual kinetic energy were analyzed. The results show that under the same total energy, the displacement of lattice columns under a single impact is greater than that of a secondary impact. The optimal energy distribution obtained by numerical simulation can reduce the residual displacement of members impacted along different directions by about 12%. When the lattice column is subjected to a larger proportion of energy for the first time or a smaller proportion of impact energy for the second time, the total energy absorbed by the column is smaller. Finally, based on the results of experiments and numerical simulations, the maximum impact velocity at which the damaged column can withstand a second impact is proposed. The results of the study can provide a reference for the design method of lattice steel columns under such loading conditions.
-
Key words:
- lattice columns /
- secondary impact /
- dynamic response /
- energy distribution
-
表 1 连续二次冲击试验的试验条件
Table 1. Continuous secondary impact test conditions of specimens
试件编号 落锤质量/kg 冲击高度/m 冲击位置 冲击能量/kJ 冲击速度/(m·s−1) 轴压比 第1次 第2次 第1次 第2次 V1L1-Ⅱ 260 1.0 1.0 正面 2.548 4.43 4.43 0.25 V3L1 260 2.0 0 正面 5.096 6.26 0 0.25 V1L2-Ⅱ 260 1.0 1.0 侧面 2.548 4.43 4.43 0.25 V3L2 260 2.0 0 侧面 5.096 6.26 0 0.25 表 2 不同能量分配数值模拟结果
Table 2. Numerical simulation results of specimens with different energy distribution
试件编号 E1st/kJ E2nd/kJ v1st/(m·s−1) v2nd/(m·s−1) T1st/ms T2nd/ms F1st/kN F2nd/kN wres1/mm wres2/mm CS-F0-S100 0 154.57 0 5.56 0 165.38 0 425.46 0 260.51 CS-F10-S90 15.46 149.11 1.76 5.46 87.00 154.83 275.77 420.91 35.00 254.35 CS-F25-S75 38.64 115.93 2.78 4.82 108.38 149.50 335.38 418.96 79.40 243.84 CS-F50-S50 77.29 77.29 3.93 3.93 132.50 133.00 380.89 403.80 142.99 238.74 CS-F75-S25 115.93 38.64 4.82 2.78 150.50 111.00 406.92 356.24 199.51 237.88 CS-F90-S10 149.11 15.46 5.46 1.76 163.00 97.50 415.33 294.04 226.36 229.15 CL-F0-S100 0 154.57 0 5.56 0 183.75 0 392.92 0 277.46 CL-F10-S90 15.46 149.11 1.76 5.46 111.00 179.25 225.09 381.63 41.85 266.90 CL-F25-S75 38.64 115.93 2.78 4.82 134.00 165.00 283.03 367.59 90.70 254.62 CL-F50-S50 77.29 77.29 3.93 3.93 159.00 144.75 329.92 352.96 157.31 249.15 CL-F75-S25 115.93 38.64 4.82 2.78 175.00 127.50 352.35 323.04 211.04 244.72 CL-F90-S10 149.11 15.46 5.46 1.76 184.38 116.25 372.81 266.41 238.61 242.79 -
[1] EL AGHOURY M A, SALEM A H, HANNA M T, et al. Experimental investigation for the behaviour of battened beam-columns composed of four equal slender angles [J]. Thin-Walled Structures, 2010, 48(9): 669–683. DOI: 10.1016/j.tws.2010.03.007. [2] 欧智菁, 陈宝春. 钢管混凝土格构柱发展和研究 [J]. 福州大学学报(自然科学版), 2008, 36(4): 585–591. DOI: 10.3969/j.issn.1000-2243.2008.04.024.OU Z J, CHEN B C. Experimental research on concrete filled steel tubular laced columns compressed eccentrically [J]. Journal of Fuzhou University (Natural Science), 2008, 36(4): 585–591. DOI: 10.3969/j.issn.1000-2243.2008.04.024. [3] FERRER B, IVORRA S, SEGOVIA E, et al. Tridimensional modelization of the impact of a vehicle against a metallic parking column at a low speed [J]. Engineering Structures, 2010, 32(8): 1986–1992. DOI: 10.1016/j.engstruct.2010.02.032. [4] GILBERT B P, RASMUSSEN K J R. Determination of accidental forklift truck impact forces on drive-in steel rack structures [J]. Engineering Structures, 2011, 33(5): 1403–1409. DOI: 10.1016/j.engstruct.2010.10.022. [5] ZHOU X H, HE Y J, XIANG S Y, et al. Experimental and numerical studies on structural response of steel garage subjected to vehicular collision [J]. Structures, 2022, 37: 933–946. DOI: 10.1016/J.ISTRUC.2022.01.068. [6] 郭玉旭, 席丰, 谭英华, 等. 超高车辆与箱梁立交桥碰撞简化计算模型评估分析 [J]. 爆炸与冲击, 2023, 43(3): 033302. DOI: 10.11883/bzycj-2022-0029.GUO Y X, XI F, TAN Y H, et al. Analysis on assessment of simplified compuational models for collision of over-height vehicles with box-girder flyovers [J]. Explosion and Shock Waves, 2023, 43(3): 033302. DOI: 10.11883/bzycj-2022-0029. [7] XIANG S Y, HE Y J, ZHOU X H, et al. Continuous twice-impact analysis of steel parking structure columns [J]. Journal of Constructional Steel Research, 2021, 187: 106989. DOI: 10.1016/J.JCSR.2021.106989. [8] 尹小莉, 闫晓彦, 陈鹏程. 钢结构格构柱抗侧向冲击性能研究 [J]. 中国科技论文, 2024, 19(3): 292–299. DOI: 10.3969/j.issn.2095-2783.2024.03.006.YIN X L, YAN X Y, CHEN P C. Research on lateral impact resistance of steel lattice columns [J]. China Sciencepaper, 2024, 19(3): 292–299. DOI: 10.3969/j.issn.2095-2783.2024.03.006. [9] 崔凯, 张永胜, 郭昭胜. 格构式钢柱在冲击作用下动态响应的有限元分析 [J]. 科学技术与工程, 2020, 20(4): 1551–1557. DOI: 10.3969/j.issn.1671-1815.2020.04.039.CUI K, ZHANG Y S, GUO Z S. Finite element analysis on dynamic behavior of a latticed steel column under impacts [J]. Science Technology and Engineering, 2020, 20(4): 1551–1557. DOI: 10.3969/j.issn.1671-1815.2020.04.039. [10] CUI J L, WANG R, ZHAO H, et al. Built-up battened steel columns under impact loading: Experimental and numerical analysis [J]. Journal of Constructional Steel Research, 2021, 179: 106515. DOI: 10.1016/J.JCSR.2020.106515. [11] 崔娟玲, 郭昭胜, 王蕊. 格构式钢柱抗侧向撞击性能的试验研究 [J]. 振动与冲击, 2015, 34(21): 129–135. DOI: 10.13465/j.cnki.jvs.2015.21.023.CUI J L, GUO Z S, WANG R. Tests for dynamic behavior of a latticed steel column under lateral impacts [J]. Journal of Vibration and Shock, 2015, 34(21): 129–135. DOI: 10.13465/j.cnki.jvs.2015.21.023. [12] JONES N, LIU T G, ZHENG J J, et al. Clamped beam grillages struck transversely by a mass at the centre [J]. International Journal of Impact Engineering, 1991, 11(3): 379–399. DOI: 10.1016/0734-743X(91)90045-H. [13] SHEN W Q, JONES N. Dynamic response of a grillage under mass impact [J]. International Journal of Impact Engineering, 1993, 13(4): 555–565. DOI: 10.1016/0734-743X(93)90087-N. [14] KORMI K, SHAGHOUEI E, DUDDELL D A. Finite element examination of the dynamic response of clamped beam grillages impacted transversely at their centres by a rigid mass [J]. International Journal of Impact Engineering, 1994, 15(5): 687–697. DOI: 10.1016/0734-743X(94)90177-M. [15] TRUONG D D, SHIN H K, CHO S R. Repeated lateral impacts on steel grillage structures at room and sub-zero temperatures [J]. International Journal of Impact Engineering, 2018, 113: 40–53. DOI: 10.1016/j.ijimpeng.2017.11.007. [16] ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes [J]. International Journal of Impact Engineering, 1984, 2(2): 179–208. DOI: 10.1016/0734-743X(84)90005-8. [17] HE X, SOARES C G. Experimental study on the dynamic behavior of beams under repeated impacts [J]. International Journal of Impact Engineering, 2021, 147: 103724. DOI: 10.1016/j.ijimpeng.2020.103724.