基于水下爆炸的爆轰产物JWL状态方程确定方法研究

焦俊杰 单锋 王晗程 祁妍洁 潘绪超 方中 程宇波 贺小兰 慈圣杰 何勇

焦俊杰, 单锋, 王晗程, 祁妍洁, 潘绪超, 方中, 程宇波, 贺小兰, 慈圣杰, 何勇. 基于水下爆炸的爆轰产物JWL状态方程确定方法研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0203
引用本文: 焦俊杰, 单锋, 王晗程, 祁妍洁, 潘绪超, 方中, 程宇波, 贺小兰, 慈圣杰, 何勇. 基于水下爆炸的爆轰产物JWL状态方程确定方法研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0203
JIAO Junjie, SHAN Feng, WANG Hancheng, QI Yanjie, PAN Xuchao, FANG Zhong, CHENG Yubo, HE Xiaolan, CI Shengjie, HE Yong. Determination of JWL equation of state based on the detonation product from underwater explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0203
Citation: JIAO Junjie, SHAN Feng, WANG Hancheng, QI Yanjie, PAN Xuchao, FANG Zhong, CHENG Yubo, HE Xiaolan, CI Shengjie, HE Yong. Determination of JWL equation of state based on the detonation product from underwater explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0203

基于水下爆炸的爆轰产物JWL状态方程确定方法研究

doi: 10.11883/bzycj-2024-0203
基金项目: 国家自然科学基金(62201267,12372334)
详细信息
    作者简介:

    焦俊杰(1984- ),男,博士,副教授,jjj120@njust.edu.cn

    通讯作者:

    何 勇(1964- ),男,博士,教授,yhe1964@njust.edu.cn

  • 中图分类号: O384

Determination of JWL equation of state based on the detonation product from underwater explosion

  • 摘要: 为了获得炸药爆轰产物状态方程,对RDX炸药进行了水下爆炸气泡膨胀过程试验,测试了水下爆炸气泡半径和冲击波阵面随时间的变化规律,通过水下爆炸气泡膨胀过程中的能量守恒关系,获得了基于水下爆炸试验的爆轰产物JWL状态方程确定方法,分析了RDX炸药水下爆炸气泡膨胀和冲击波阵面运动过程,测定了RDX炸药爆轰产物JWL状态方程参数,并与圆筒试验获得的参数进行了比较。结果表明,通过水下爆炸法和圆筒试验方法标定的JWL方程参数得到的气泡膨胀过程基本相同,但水下爆炸法得到的气泡半径的计算值和实验值在低压阶段的偏差更小。该方法提供了一种更适用于水下爆炸的炸药爆轰产物状态方程的测定方法。
  • 图  1  水中爆炸气泡高速膨胀的测试系统示意图

    Figure  1.  Schematic diagram of explosive bubbles high-speed expansion experimental system

    图  2  RDX炸药的水下爆炸气泡膨胀及冲击波测试过程

    Figure  2.  The initial bubble expansion and shock wave testing process of RDX explosive

    图  3  水下爆炸冲击波阵面位置和速度随时间的变化曲线

    Figure  3.  The curve of shock wave front position and velocity changes with time in underwater explosions

    图  4  水下爆炸气泡半径和速度随时间的变化曲线

    Figure  4.  The curve underwater explosion bubble radius and velocity changes with time

    图  5  RDX水下爆炸气泡半径与速度随时间的变化曲线

    Figure  5.  the curve of RDX explosion bubble radius and expansion velocity changed with time

    图  6  不同JWL方程参数下RDX水下爆炸的气泡脉动特性

    Figure  6.  Bubble pulsation characteristics of RDX underwater explosion in different JWL equation parameters

    表  1  RDX炸药水下爆炸气泡半径的拟合参数

    Table  1.   The bubble radius fitting parameters of RDX explosive in underwater explosion

    F1/mm τ1/(μs−1) F2/mm τ2/(μs−1) F3/mm
    −9.46 0.1128 46.3 0.008 9.9
    下载: 导出CSV

    表  2  RDX炸药水下爆炸冲击波阵面位置的拟合参数

    Table  2.   The shock wave front position fitting parameters of RDX explosive in underwater explosion

    a1/mmb1/(μs−1)a2/mmb2/(μs−1)
    8.650.25922.20.033
    下载: 导出CSV

    表  3  RDX炸药爆轰产物的JWL状态方程参数

    Table  3.   The parameters of JWL state equation for RDX explosive detonation products

    A/GPaB/GPaC/GPaR1R2ω数据来源
    933.827.2360.7884.511.220.15本研究
    581.406.8010.2344.101.000.35文献[17]
    下载: 导出CSV
  • [1] 陈朗, 冯长根, 黄毅民. 含铝炸药圆筒试验及爆轰产物JWL状态方程研究 [J]. 火炸药学报, 2001, 24(3): 13–15. DOI: 10.3969/j.issn.1007-7812.2001.03.005.

    CHEN L, FENG C G, HUANG Y M. The cylinder test and JWL equation of state detontion product of aluminized explosives [J]. Chinese Journal of Explosives & Propellants, 2001, 24(3): 13–15. DOI: 10.3969/j.issn.1007-7812.2001.03.005.
    [2] 裴红波, 钟斌, 李星瀚, 等. RDX基含铝炸药圆筒试验及状态方程研究 [J]. 火炸药学报, 2019, 42(4): 403–409. DOI: 10.14077/j.issn.1007-7812.2019.04.015.

    PEI H B, ZHONG B, LI X H, et al. Study on the cylinder tests and equation of state in RDX based aluminized explosives [J]. Chinese Journal of Explosives & Propellants, 2019, 42(4): 403–409. DOI: 10.14077/j.issn.1007-7812.2019.04.015.
    [3] 沈飞, 王辉, 袁建飞, 等. RDX基含铝炸药不同尺寸的圆筒试验及数值模拟 [J]. 含能材料, 2013, 21(6): 777–780. DOI: 10.3969/j.issn.1006-9941.2013.06.017.

    SHEN F, WANG H, YUAN J F, et al. Different diameter cylinder tests and numerical simulation of RDX based aluminized explosive [J]. Chinese Journal of Energetic Materials, 2013, 21(6): 777–780. DOI: 10.3969/j.issn.1006-9941.2013.06.017.
    [4] 韩勇, 黄辉, 黄毅民, 等. 含铝炸药圆筒试验与数值模拟 [J]. 火炸药学报, 2009, 32(4): 14–17. DOI: 10.3969/j.issn.1007-7812.2009.04.004.

    HAN Y, HUANG H, HUANG Y M, et al. Cylinder test of aluminized explosives and its numerical simulation [J]. Chinese Journal of Explosives & Propellants, 2009, 32(4): 14–17. DOI: 10.3969/j.issn.1007-7812.2009.04.004.
    [5] 杨晨琛, 李晓杰, 闫鸿浩, 等. 爆轰产物状态方程的水下爆炸反演理论研究 [J]. 爆炸与冲击, 2019, 39(9): 092201. DOI: 10.11883/bzycj-2018-0210.

    YANG C C, LI X J, YAN H H, et al. An inverse method for the equation of state of detonation products from underwater explosion tests [J]. Explosion and Shock Waves, 2019, 39(9): 092201. DOI: 10.11883/bzycj-2018-0210.
    [6] HOLTON W C. The detonation pressures in explosives as measured by transmitted shocks in water: NAVORD Report 3968 [R]. White Oak: U. S. Naval Ordnance Laboratory, 1954.
    [7] COOK M A, PACK D H, MCEWAN W S. Promotion of shock initiation of detonation by metallic surfaces [J]. Transactions of the Faraday Society, 1960, 56: 1028–1038. DOI: 10.1039/tf9605601028.
    [8] RIGDON J K. Explosive performance: SANL-712-004 [R]. Amarillo: Mason and Hanger-Silas Mason Company Incorporated, 1969. DOI: 10.2172/532483.
    [9] 杨凯, 孔军利, 沈飞, 等. 水下滑移爆轰试验确定JWL状态方程参数 [J]. 火炸药学报, 2013, 36(3): 62–64. DOI: 10.3969/j.issn.1007-7812.2013.03.015.

    YANG K, KONG J L, SHEN F, et al. Determining the parameters of JWL EOS by underwater sliding detonation test [J]. Chinese Journal of Explosives & Propellants, 2013, 36(3): 62–64. DOI: 10.3969/j.issn.1007-7812.2013.03.015.
    [10] 沈飞, 王辉, 袁建飞, 等. 含铝炸药水下滑移爆轰实验研究 [J]. 实验力学, 2014, 29(5): 641–646. DOI: 10.7520/1001-4888-13-202.

    SHEN F, WANG H, YUAN J F, et al. Experimental study of underwater sliding detonation of aluminized explosives [J]. Journal of Experimental Mechanics, 2014, 29(5): 641–646. DOI: 10.7520/1001-4888-13-202.
    [11] 魏贤凤, 龙新平, 韩勇. PBX-01炸药水中爆轰产物状态方程研究 [J]. 爆炸与冲击, 2015, 35(4): 599–602. DOI: 10.11883/1001-1455(2015)04-0599-04.

    WEI X F, LONG X P, HAN Y. Studies on the state equation of the underwater detonation products for PBX-01 explosive [J]. Explosion and Shock Waves, 2015, 35(4): 599–602. DOI: 10.11883/1001-1455(2015)04-0599-04.
    [12] 李科斌, 董新龙, 李晓杰, 等. 水下爆炸实验法在工业炸药JWL状态方程测定中的应用研究 [J]. 兵工学报, 2020, 41(3): 488–494. DOI: 10.3969/j.issn.1000-1093.2020.03.009.

    LI K B, DONG X L, LI X J, et al. Research on parameters determination of JWL EOS for commercial explosives based on underwater explosion test [J]. Acta Armamentarii, 2020, 41(3): 488–494. DOI: 10.3969/j.issn.1000-1093.2020.03.009.
    [13] 林谋金, 马宏昊, 沈兆武, 等. 铝纤维对黑索今水下爆炸性能的影响 [J]. 爆炸与冲击, 2014, 34(3): 379–384. DOI: 10.11883/1001-1455(2014)03-0379-06.

    LIN M J, MA H H, SHEN Z W, et al. Effect of aluminum fiber on underwater detonation performance of RDX [J]. Explosion and Shock Waves, 2014, 34(3): 379–384. DOI: 10.11883/1001-1455(2014)03-0379-06.
    [14] 胡宏伟, 王建灵, 徐洪涛, 等. RDX基含铝炸药水中爆炸近场冲击波特性 [J]. 火炸药学报, 2009, 32(2): 1–5. DOI: 10.3969/j.issn.1007-7812.2009.02.001.

    HU H W, WANG J L, XU H T, et al. Underwater shock wave characteristics of RDX-based aluminized explosives in near-field range [J]. Chinese Journal of Explosives & Propellants, 2009, 32(2): 1–5. DOI: 10.3969/j.issn.1007-7812.2009.02.001.
    [15] ZHANG J X, WANG S S, JIA X Y, et al. An improved Kirkwood–Bethe model for calculating near-field shockwave propagation of underwater explosions [J]. AIP Advances, 2021, 11(3): 035123. DOI: 10.1063/5.0040224.
    [16] 沈飞, 王辉, 袁建飞, 等. 铝含量对RDX基含铝炸药驱动能力的影响 [J]. 火炸药学报, 2013, 36(3): 50–53. DOI: 10.3969/j.issn.1007-7812.2013.03.012.

    SHEN F, WANG H, YUAN J F, et al. Influence of Al content on the driving ability of RDX-based aluminized explosives [J]. Chinese Journal of Explosives & Propellants, 2013, 36(3): 50–53. DOI: 10.3969/j.issn.1007-7812.2013.03.012.
    [17] DOBRATZ B M, CRAWFORD P C. LLNL explosives handbook - properties of chemical explosives and explosive simulants: UCRL--52997-Chg. 2 [R]. Livermore: Lawrence Livermore National Laboratory, 1981.
    [18] SHAN F, HE Y, JIAO J J, et al. Experimental and theoretical analysis of detonation products state on bubble dynamics and energy distribution in underwater explosion [J]. Journal of Applied Physics, 2021, 130(17): 174701. DOI: 10.1063/5.0058644.
    [19] WANG H C, HE Y, SHAN F, et al. Roles of underwater explosion bubble accelerating expansion cut-off state in bubble dynamics and energy output [J]. Journal of Applied Physics, 2022, 132(19): 194704. DOI: 10.1063/5.0110446.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  1
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-27
  • 修回日期:  2024-10-18
  • 网络出版日期:  2024-11-05

目录

    /

    返回文章
    返回