• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

两种材料结构弹体高速侵彻钢筋混凝土靶实验研究

王可慧 孟龙 李明 邹慧辉 吴海军 戴湘晖 段建 周刚

王可慧, 孟龙, 李明, 邹慧辉, 吴海军, 戴湘晖, 段建, 周刚. 两种材料结构弹体高速侵彻钢筋混凝土靶实验研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0213
引用本文: 王可慧, 孟龙, 李明, 邹慧辉, 吴海军, 戴湘晖, 段建, 周刚. 两种材料结构弹体高速侵彻钢筋混凝土靶实验研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0213
WANG Kehui, MENG Long, LI Ming, ZOU Huihui, WU Haijun, DAI Xianghui, DUAN Jian, ZHOU Gang. Experimental study on high-speed penetration of reinforced concrete targets by structural projectiles made of two types of materials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0213
Citation: WANG Kehui, MENG Long, LI Ming, ZOU Huihui, WU Haijun, DAI Xianghui, DUAN Jian, ZHOU Gang. Experimental study on high-speed penetration of reinforced concrete targets by structural projectiles made of two types of materials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0213

两种材料结构弹体高速侵彻钢筋混凝土靶实验研究

doi: 10.11883/bzycj-2024-0213
基金项目: 国家自然科学基金(11772269,11402213)
详细信息
    作者简介:

    王可慧(1975- ),女,博士,研究员,wangkehui@nint.ac.cn

    通讯作者:

    周 刚(1964- ),男,博士,研究员,springaround@163.com

  • 中图分类号: O385; TJ012.4

Experimental study on high-speed penetration of reinforced concrete targets by structural projectiles made of two types of materials

  • 摘要: 设计了2种不同材料的结构弹,利用203 mm平衡炮为发射平台,开展了11 kg级弹体在1400 m/s速度段侵彻钢筋混凝土靶的实验研究。基于试验结果,对侵彻弹体进行了宏微观结构表征,探究了不同材料弹体在高速侵彻下的侵蚀机理,分析了壳体材料对弹体侵彻效应的影响。结果表明:在实验速度段,弹体材料主导弹体的侵蚀变形,材料强度越高,抗冲击压缩性能越强,弹体头部的侵蚀越小;材料的抗剪和耐磨性越好,弹身的磨蚀越少。高速侵彻条件下,锥形结构弹体的质量损失主要集中在弹身部分。弹体头部的侵蚀和墩粗在一定程度上会降低弹体的侵彻深度,弹体头部侵蚀程度越小,侵彻深度越高,其中,DT1900实验弹的极限侵彻深度可达9倍弹长。
  • 图  1  实验弹

    Figure  1.  Experimental projectile

    图  2  圆柱形钢筋混凝土靶

    Figure  2.  Cylindrical reinforced concrete target

    图  3  实验现场布置示意图

    Figure  3.  Layout of projectile penetration experiment

    图  4  203 mm口径平衡炮

    Figure  4.  203 mm Davis gun

    图  5  发射弹体

    Figure  5.  Launching projectile

    图  6  靶板破坏情况(v0=1433 m/s)

    Figure  6.  Damage of target(v0=1433 m/s)

    图  7  回收弹体

    Figure  7.  Recovered projectiles

    图  8  侵蚀区的蘑菇头墩粗

    Figure  8.  Mushroom capitate erosion deformation

    图  9  扫描电镜的选点

    Figure  9.  Point position of SEM

    图  10  弹体1和2的表面微观形貌

    Figure  10.  The SEM of projectile 1 and projectile 2

    图  11  不同测点处弹体1和2的EDS谱图

    Figure  11.  The EDS of projectile 1 and projectile 2 at different point

    图  12  弹体1和2的截面显微组织形貌

    Figure  12.  The section profile SEM of projectile 1 and projectile 2

    图  13  质量损失率的对比

    Figure  13.  Comparison of mass loss rate

    图  14  实验结果与经验公式对比

    Figure  14.  Comparison of experimental value and empirical formula

    表  1  热处理后弹体材料的力学性能

    Table  1.   Mechanical properties of projectile material after heat treatment

    材料 序号 ${\sigma _{0.2}}$/MPa ${\sigma _b}$/MPa δ/% Ψ/% KIC/(MPa·m1/2 HRC
    30CrMnSiNi2MoVE 1 1326 1656 12.8 45 110 48.6
    2 1356 1680 10.9 45 107 48.5
    3 1390 1713 10.5 43 101 48.8
    DT1900 1 1770 1960 14.0 64.5 118 52.5
    2 1790 1970 14.0 69.0 110 51.6
    3 1770 2000 14.0 65.5 103 52.2
    下载: 导出CSV

    表  2  实验结果

    Table  2.   Test results

    弹体编号 弹体质量/kg 靶板强度/MPa 撞靶速度/(m·s−1) 侵彻深度/m 剩余弹体尺寸/mm 剩余弹体质量/kg
    长度 直径
    1 11.27 32.5 1418 3.6 415.85 87.03 10.18
    2 11.30 30.7 1433 3.8 432.16 86.04 10.11
    3 11.40 30.7 1407 4.2 433.07 86.04 10.29
    下载: 导出CSV

    表  3  靶体材料参数

    Table  3.   Material parameter of target

    靶体材料E/GPaφ/(˚)Y/MPaA
    0.75373.68
    混凝土305305.74
    下载: 导出CSV

    表  4  实验弹的几何尺寸变化及质量损失

    Table  4.   The variation of the projectile size and mass

    弹体材料 v0/(m·s−1) L/L)/% D/D)/% mt/m)/% mb/m)/% m/m)/%
    30CrMnSiNi2MoVE14188.23.32.137.569.69
    DT190014074.44.40.319.439.74
    14334.64.40.3210.2010.52
    下载: 导出CSV

    表  5  实验弹的无量纲侵彻深度

    Table  5.   Dimensionless penetration depth of experimental projectile

    弹体材料 撞靶速度/(m·s−1 靶板强度/MPa 靶板厚度 H/L
    30CrMnSiNi2MoVE 1418 32.5 有限靶 7.95
    DT1900 1407 30.7 9.27
    1433 30.7 8.39
    下载: 导出CSV
  • [1] 杨建超, 左新建, 何翔, 等. 弹体高速侵彻混凝土质量侵蚀实验研究 [J]. 实验力学, 2012, 27(1): 122–127.

    YANG J C, ZUO X J, HE X, et al. Experimental study of projectile mass loss in high velocity penetration of concrete target [J]. Journal of Experimental Mechanics, 2012, 27(1): 122–127.
    [2] DONG H, LIU Z H, WU H J, et al. Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete [J]. International Journal of Impact Engineering, 2019, 132: 103311. DOI: 10.1016/j.ijimpeng.2019.05.025.
    [3] ZHANG X Y, WU H J, ZHANG S, et al. Projectile penetration of reinforced concrete considering the effect of steel reinforcement: Experimental study and theoretical analysis [J]. International Journal of Impact Engineering, 2020, 144: 103653. DOI: 10.1016/j.ijimpeng.2020.103653.
    [4] WANG J, WU H J, DONG H, et al. Flow field analysis of long rod hypervelocity penetration into semi-infinite concrete target [J]. Mechanics of Materials, 2023, 179: 104564. DOI: 10.1016/j.mechmat.2023.104564.
    [5] GUO L, HE Y, ZHANG X F, et al. Thermal-mechanical analysis on the mass loss of high-speed projectiles penetrating concrete targets [J]. European Journal of Mechanics - A/Solids, 2017, 65: 159–177. DOI: 10.1016/j.euromechsol.2017.03.011.
    [6] GUO L, HE Y, ZHANG X F, et al. Study mass loss at microscopic scale for a projectile penetration into concrete [J]. International Journal of Impact Engineering, 2014, 72: 17–25. DOI: 10.1016/j.ijimpeng.2014.05.001.
    [7] 周忠彬, 马田, 赵永刚, 等. 不同材料弹体超声速侵彻钢筋混凝土靶的结构破坏对比实验 [J]. 高压物理学报, 2020, 34(2): 025101. DOI: 10.11858/gywlxb.20190841.

    ZHOU Z B, MA T, ZHAO Y G, et al. Comparative experiment on structural damage of supersonic projectiles with different metal materials penetrating into reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025101. DOI: 10.11858/gywlxb.20190841.
    [8] DENG Y J, CHEN X W, SONG W J. Dynamic cavity-expansion penetration model of elastic-cracked-crushed response for reinforced-concrete targets [J]. International Journal of Impact Engineering, 2021, 157: 103981. DOI: 10.1016/j.ijimpeng.2021.103981.
    [9] LU Y Y, ZHANG Q M, XUE Y J, et al. Hypervelocity penetration of concrete targets with long-rod steel projectiles: experimental and theoretical analysis [J]. International Journal of Impact Engineering, 2021, 148: 103742. DOI: 10.1016/j.ijimpeng.2020.103742.
    [10] KAMAL I M, ELTEHEWY E M. Projectile penetration of reinforced concrete blocks: Test and analysis [J]. Theoretical and Applied Fracture Mechanics, 2012, 60(1): 31–37. DOI: 10.1016/j.tafmec.2012.06.005.
    [11] MU Z C, ZHANG W, WANG W, et al. Revising the penetration behavior of concrete-like and metal-like materials against the rigid projectile impact [J]. Mechanics of Materials, 2020, 142: 103274. DOI: 10.1016/j.mechmat.2019.103274.
    [12] FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. DOI: 10.1016/S0734-743X(02)00108-2.
    [13] FREW D J, FORRESTAL M J, CARGILE J D. The effect of concrete target diameter on projectile deceleration and penetration depth [J]. International Journal of Impact Engineering, 2006, 32(10): 1584–1594. DOI: 10.1016/j.ijimpeng.2005.01.012.
    [14] 武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55. DOI: 10.3969/j.issn.1000-1093.2012.01.009.

    WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55. DOI: 10.3969/j.issn.1000-1093.2012.01.009.
    [15] 何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土的效应实验 [J]. 爆炸与冲击, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.

    HE X, XU X Y, SUN G J, et al. Experimental investigation on projectiles’ high-velocity penetration into concrete targets [J]. Explosion and Shock Waves, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.
    [16] 戴湘晖, 周刚, 沈子楷, 等. 高速弹体对钢筋混凝土靶的侵彻/贯穿效应实验研究 [J]. 高压物理学报, 2019, 33(5): 055101. DOI: 10.11858/gywlxb.20180672.

    DAI X H, ZHOU G, SHEN Z K, et al. Experimental study of high-speed projectile penetration/perforation into reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055101. DOI: 10.11858/gywlxb.20180672.
    [17] FENG J, SONG M L, SUN W W, et al. Thick plain concrete targets subjected to high speed penetration of 30CrMnSiNi2A steel projectiles: Tests and analyses [J]. International Journal of Impact Engineering, 2018, 122: 305–317. DOI: 10.1016/j.ijimpeng.2018.09.005.
    [18] 郭磊, 何勇, 潘绪超, 等. 高速侵彻弹体表层侵蚀效应理论计算 [J]. 振动与冲击, 2018, 37(15): 51–58. DOI: 10.13465/j.cnki.jvs.2018.15.007.

    GUO L, HE Y, PAN X C, et al. Theoretical calculation for surface abrasion effect of projectiles penetrating in to concrete targets with a high speed [J]. Journal of Vibration and Shock, 2018, 37(15): 51–58. DOI: 10.13465/j.cnki.jvs.2018.15.007.
    [19] 梁斌, 陈小伟, 姬永强, 等. 先进钻地弹概念弹的次口径高速深侵彻实验研究 [J]. 爆炸与冲击, 2008, 28(1): 1–9. DOI: 10.11883/1001-1455(2008)01-0001-09.

    LIANG B, CHEN X W, JI Y Q, et al. Experimental study on deep penetration of reduced-scale advanced earth penetrating weapon [J]. Explosion and Shock Waves, 2008, 28(1): 1–9. DOI: 10.11883/1001-1455(2008)01-0001-09.
    [20] ZHAO J, CHEN X W, JIN F N, et al. Depth of penetration of high-speed penetrator with including the effect of mass abrasion [J]. International Journal of Impact Engineering, 2010, 37(9): 971–979. DOI: 10.1016/j.ijimpeng.2010.03.008.
    [21] 王可慧, 周刚, 李明, 等. 弹体高速侵彻钢筋混凝土靶试验研究 [J]. 爆炸与冲击, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.

    WANG K H, ZHOU G, LI M, et al. Experimental research on the mechanism of a high-velocity projectile penetrating into a reinforced concrete target [J]. Explosion and Shock Waves, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.
    [22] 任辉启. 精确制导武器侵彻效应与工程防护 [M]. 北京: 科学出版社, 2016.

    REN Q H. The penetration effect of precision guided weapons and engineering protection [M]. Beijing: Science Press, 2016.
    [23] 武海军, 张爽, 黄风雷. 钢筋混凝土靶的侵彻与贯穿研究进展 [J]. 兵工学报, 2018, 39(1): 182–208. DOI: 10.3969/j.issn.1000-1093.2018.01.020.

    WU H J, ZHANG S, HUANG F L. Research progress in penetration/perforation into reinforced concrete targets [J]. Acta Armamentarii, 2018, 39(1): 182–208. DOI: 10.3969/j.issn.1000-1093.2018.01.020.
    [24] GWALTNEY R C. Missile generation and protection in light-water-cooled power reactor plants: ORNL-NSIC-22 [R]. Oak Ridge: Oak Ridge National Laboratory, 1968.
    [25] 邓佳杰, 张先锋, 刘闯, 等. 头部非对称刻槽弹体侵彻混凝土目标性能研究 [J]. 兵工学报, 2018, 39(7): 1249–1258. DOI: 10.3969/j.issn.1000-1093.2018.07.001.

    DENG J J, ZHANG X F, LIU C, et al. Research on penetration of asymmetrically grooved nose projectile into concrete target [J]. Acta Armamentarii, 2018, 39(7): 1249–1258. DOI: 10.3969/j.issn.1000-1093.2018.07.001.
    [26] 王可慧, 段建, 李明, 等. 降低终点弹道偏转效应弹体结构设计 [J]. 弹箭与制导学报, 2015, 35(3): 50–52,98. DOI: 10.15892/j.cnki.djzdxb.2015.03.014.

    WANG K H, DUAN J, LI M, et al. Penetrator design to reduce trajectory deflexion effect [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(3): 50–52,98. DOI: 10.15892/j.cnki.djzdxb.2015.03.014.
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  41
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-01
  • 修回日期:  2025-02-07
  • 网络出版日期:  2025-02-17

目录

    /

    返回文章
    返回