冲击荷载下含铜矿岩能量耗散的数值模拟

左庭 李祥龙 王建国 胡启文 陶子豪 胡涛 章彬彬 宋家旺

左庭, 李祥龙, 王建国, 胡启文, 陶子豪, 胡涛, 章彬彬, 宋家旺. 冲击荷载下含铜矿岩能量耗散的数值模拟[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0214
引用本文: 左庭, 李祥龙, 王建国, 胡启文, 陶子豪, 胡涛, 章彬彬, 宋家旺. 冲击荷载下含铜矿岩能量耗散的数值模拟[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0214
ZUO Ting, LI Xianglong, WANG Jianguo, HU Qiwen, TAO Zihao, HU Tao, ZHANG Binbin, SONG Jiawang. Numerical modeling of the energy dissipation and fragmentation of copper-bearing rock under impact load[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0214
Citation: ZUO Ting, LI Xianglong, WANG Jianguo, HU Qiwen, TAO Zihao, HU Tao, ZHANG Binbin, SONG Jiawang. Numerical modeling of the energy dissipation and fragmentation of copper-bearing rock under impact load[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0214

冲击荷载下含铜矿岩能量耗散的数值模拟

doi: 10.11883/bzycj-2024-0214
基金项目: 国家自然科学基金(52274083);云南省重大科技专项(202202AG050014);云南省基础研究计划面上项目(202201AT070178);浙江省自然资源科技项目(2024ZJDZ026)
详细信息
    作者简介:

    左 庭(1993- ),男,博士研究生,ztkust@163.com

    通讯作者:

    李祥龙(1981- ),男,博士,教授,lxl00014002@163.com

  • 中图分类号: O346.1

Numerical modeling of the energy dissipation and fragmentation of copper-bearing rock under impact load

  • 摘要: 为了研究冲击荷载作用下含铜矿岩的破碎块度与能量耗散关系,借助分离式霍普金森压杆试验装置,分析不同冲击荷载下含铜凝灰岩的力学特性及能量传递规律,结合分形理论构建耗散能与矿岩破碎块度之间关系。同时基于有限离散元方法(finite discrete element method,FDEM)模拟矿岩的裂纹扩展行为。结果表明:随着入射能的增加,透射能、耗散能、反射能三者的能量分布规律基本保持一致,即透射能、耗散能、反射能依次降低;根据耗散能的不同,碎石块度分布也呈现出明显的差异性。当耗散能由19.52 J提升至105.72 J时,矿岩的平均块度从27.98 mm降低至16.94 mm,分形维数提升了26.43%,表明耗散能越高,矿岩的宏观破碎程度越剧烈,破碎块度的数目越多,碎块粒径越小,均匀性越好;随着冲击荷载的增大,裂纹起裂时间缩短,拉伸裂纹数量占总裂纹数量的比重提高。FDEM数值计算方法的应用为深入解析岩石断裂破坏特性提供了新的思路。
  • 图  1  SHPB试验装置

    Figure  1.  SHPB test device

    图  2  含铜凝灰岩试件

    Figure  2.  Copper bearing rock specimen

    图  3  动态应力平衡

    Figure  3.  Dynamic stress balance

    图  4  冲击气压与入射能曲线关系

    Figure  4.  Relationship between impact pressure and incident energy curve

    图  5  能量时程曲线

    Figure  5.  Energy-time history curves

    图  6  冲击荷载下含铜矿岩能量比率传递规律

    Figure  6.  Energy ratio transfer of copper bearing rock under impact load

    图  7  不同耗散能下含铜矿岩的破碎模式

    Figure  7.  Fracture patterns of copper bearing rocks under different dissipated energies

    图  8  不同耗散能与含铜矿岩破碎块度分布

    Figure  8.  Mass distribution against fragment size for different absorbed energy by copper bearing rocks

    图  9  不同耗散能与矿岩破碎块度的分布

    Figure  9.  Distribution of copper-bearing rock fragmentation for different dissipated energies

    图  10  不同耗散能条件下典型lg[M(r)/MT]-lgr关系曲线

    Figure  10.  Typical lg [M (r)/MT]-lgr curves under different dissipated energies

    图  11  耗散能与分形维数关系曲线

    Figure  11.  Relationship between fractal dimension and dissipated energy

    图  12  FDEM基本原理

    Figure  12.  Schematic diagram of FDEM

    图  13  凝灰岩试件数值计算模型

    Figure  13.  Numerical model of Tuff specimen

    图  14  不同冲击气压下含铜凝灰矿岩的裂纹演变图(蓝色代表拉伸裂纹,红色代表剪切裂纹)

    Figure  14.  Crack evolution diagram of copper-bearing Tuff specimens under different impact air pressures (Blue - Tensile Cracks, Red - Shear Cracks)

    图  15  冲击气压对裂纹的影响规律

    Figure  15.  Effects of impact air pressure on cracking

    表  1  含铜矿岩基本物理力学参数

    Table  1.   Basic physical and mechanical parameters of copper bearing rock specimen

    编号密度/(g·cm−3)纵波波速/(m·s−1)弹性模量/GPa泊松比抗压强度/MPa
    J-13.103 54993.350.3359.23
    下载: 导出CSV

    表  2  含铜矿岩的冲击实验数据

    Table  2.   SHPB test data of copper-bearing rock samples

    编号 冲击气压/
    MPa
    平均应
    变率/s−1
    峰值应力/
    MPa
    WI/J WR/J WT/J WD/J
    A-3 0.5 30.68 108.03 63.34 7.24 45.13 10.62
    B-2 0.6 35.71 119.72 81.67 5.73 55.75 19.51
    C-4 0.7 44.25 141.35 105.92 7.32 66.10 31.57
    D-1 0.8 50.93 163.19 130.76 8.05 74.19 47.75
    E-3 0.9 53.62 189.55 168.28 23.94 83.45 60.60
    F-2 1.0 59.15 200.93 203.33 37.88 89.99 75.12
    G-4 1.1 64.81 249.80 222.91 43.46 93.01 85.52
    H-1 1.2 77.39 265.90 267.09 62.21 99.06 105.72
    下载: 导出CSV

    表  3  含铜矿岩破碎块度筛分试验结果

    Table  3.   Test screening results of crushed copper-bearing rock fragments

    编号W/J各个等级粒径质量(0.01g)平均块度/
    mm
    <0.3 mm<0.5 mm<1.0 mm<2.0 mm<4.0 mm<9.5 mm<16.0 mm<19.0 mm<26.5 mm<37.5 mm
    B2-0.619.520.040.180.130.310.161.352.9512.836.44123.4227.98
    C4-0.731.580.090.130.250.550.643.034.5018.1691.3951.5123.29
    D1-0.847.750.111.522.463.743.3912.1018.8724.1947.1253.9220.54
    E3-0.960.610.070.120.320.790.789.0625.5233.4955.1820.4219.62
    F2-175.130.10.240.541.331.259.8540.7539.6122.4620.4718.28
    G4-1.185.530.150.370.751.551.3816.8444.1630.2769.63016.92
    H3-1.2105.720.270.681.202.601.9220.1751.2232.9946.9512.7416.94
    下载: 导出CSV

    表  4  FDEM参数[40]

    Table  4.   FDEM parameters[40]

    三角形单元 节理单元
    ρ/(kg·m−3) E/GPa pn/GPa pt/GPa μ c/MPa ft/MPa ϕ/(°) GI/(J·m−2) GII/(J·m−2) pf/GPa
    3080 65.00 65.00 65.00 0.28 5.26 8.26 30 1100 2200 6500
    下载: 导出CSV
  • [1] 李鹏远, 周平, 唐金荣, 等. 中国铜矿资源供应风险识别与评价: 基于长周期历史数据分析预测法 [J]. 中国矿业, 2019, 28(7): 44–51. DOI: 10.12075/j.issn.1004-4051.2019.07.027.

    LI P Y, ZHOU P, TANG J R, et al. Identification and evaluation of copper supply risk for China: using method of long-term historical data analysis [J]. China Mining Magazine, 2019, 28(7): 44–51. DOI: 10.12075/j.issn.1004-4051.2019.07.027.
    [2] 黎立云, 谢和平, 鞠杨, 等. 岩石可释放应变能及耗散能的实验研究 [J]. 工程力学, 2011, 28(3): 35–40. DOI: 10.6052/j.issn.1000-4750.2009.08.0584.

    LI L Y, XIE H P, JU Y, et al. Experimental investigations of releasable energy and dissipative energy within rock [J]. Engineering Mechanics, 2011, 28(3): 35–40. DOI: 10.6052/j.issn.1000-4750.2009.08.0584.
    [3] 武仁杰, 李海波. SHPB冲击作用下层状千枚岩多尺度破坏机理研究 [J]. 爆炸与冲击, 2019, 39(8): 083106. DOI: 10.11883/bzycj-2019-0187.

    WU R J, LI H B. Multi-scale failure mechanism analysis of layered phyllite subject to impact loading [J]. Explosion and Shock Waves, 2019, 39(8): 083106. DOI: 10.11883/bzycj-2019-0187.
    [4] CHO S H, OGATA Y, KANEKO K. Strain-rate dependency of the dynamic tensile strength of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(5): 763–777. DOI: 10.1016/S1365-1609(03)00072-8.
    [5] 江益辉. 冲击荷载作用下岩石峰后损伤破坏特性研究 [D]. 长沙: 中南大学, 2014: 48-53.

    JIANG Y H. Study on post failure behaviors of rock under impact loading [D]. Changsha: Central South University, 2014.
    [6] 尤业超, 李二兵, 谭跃虎, 等. 基于能量耗散原理的盐岩动力特性及破坏特征分析 [J]. 岩石力学与工程学报, 2017, 36(4): 843–851. DOI: 10.13722/j.cnki.jrme.2016.0503.

    YOU Y C, LI E B, TAN Y H, et al. Analysis on dynamic properties and failure characteristics of salt rock based on energy dissipation principle [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 843–851. DOI: 10.13722/j.cnki.jrme.2016.0503.
    [7] PING Q, WU M J, YUAN P, et al. Dynamic splitting experimental study on sandstone at actual high temperatures under different loading rates [J]. Shock and Vibration, 2020, 2020: 8867102. DOI: 10.1155/2020/8867102.
    [8] LI E B, GAO L, JIANG X Q, et al. Analysis of dynamic compression property and energy dissipation of salt rock under three-dimensional pressure [J]. Environmental Earth Sciences, 2019, 78(14): 388. DOI: 10.1007/s12665-019-8389-7.
    [9] YU L Y, FU A Q, YIN Q, et al. Dynamic fracturing properties of marble after being subjected to multiple impact loadings [J]. Engineering Fracture Mechanics, 2020, 230: 106988. DOI: 10.1016/j.engfracmech.2020.106988.
    [10] WU Z J, CUI W J, FAN L F, et al. Mesomechanism of the dynamic tensile fracture and fragmentation behaviour of concrete with heterogeneous mesostructure [J]. Construction and Building Materials, 2019, 217: 573–591. DOI: 10.1016/j.conbuildmat.2019.05.094.
    [11] FUKUDA D, MOHAMMADNEJAD M, LIU H Y, et al. Development of a 3D hybrid finite-discrete element simulator based on GPGPU-parallelized computation for modelling rock fracturing under quasi-static and dynamic loading conditions [J]. Rock Mechanics and Rock Engineering, 2020, 53(3): 1079–1112. DOI: 10.1007/s00603-019-01960-z.
    [12] WU D, LI H B, FUKUDA D, et al. Development of a finite-discrete element method with finite-strain elasto-plasticity and cohesive zone models for simulating the dynamic fracture of rocks [J]. Computers and Geotechnics, 2023, 156: 105271. DOI: 10.1016/j.compgeo.2023.105271.
    [13] 柴少波, 王昊, 井彦林, 等. 充填节理岩石累积损伤动力压缩特性试验研究 [J]. 岩石力学与工程学报, 2020, 39(10): 2025–2037. DOI: 10.13722/j.cnki.jrme.2020.0310.

    CHAI S B, WANG H, JING Y L, et al. Experimental study on dynamic compression characteristics of rock with filled joints after cumulative damage [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2025–2037. DOI: 10.13722/j.cnki.jrme.2020.0310.
    [14] 滕骁, 卢玉斌, 陈兴, 等. 再生混凝土动态直接拉伸的试验研究 [J]. 振动与冲击, 2016, 35(9): 43–51. DOI: 10.13465/j.cnki.jvs.2016.09.008.

    TENG X, LU Y B, CHEN X, et al. Tests for dynamic direct tensile of recycled aggregate concrete [J]. Journal of Vibration and Shock, 2016, 35(9): 43–51. DOI: 10.13465/j.cnki.jvs.2016.09.008.
    [15] 魏威. 冲击载荷作用下活性材料的响应特性研究 [D]. 北京: 北京理工大学, 2016: 35–39.

    WEI W. Study on the dynamic responses of the active materialsunder impact loadings [D]. Beijing: Beijing Institute of Technology, 2016.
    [16] 王建国, 雷振, 杨阳, 等. 饱水冻结花岗岩动态力学性状的应变率效应 [J]. 地下空间与工程学报, 2018, 14(5): 1292–1297.

    WANG J G, LEI Z, YANG Y, et al. Strain rate effect of dynamic mechanical characteristics of saturated freezing granite [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1292–1297.
    [17] 袁芝斌. 大红山铜矿深部巷道围岩动态破碎耗能规律研究 [D]. 昆明: 昆明理工大学, 2021: 53–56. DOI: 10.27200/d.cnki.gkmlu.2021.000385.

    YUAN Z B. Research on the energy dissipation mechanism of dynamic fragmentation in surrounding rock of deep shafts in the Dahongshan copper mine [D]. Kunming: Kunming University of Science and Technology, 2021: 53–56. DOI: 10.27200/d.cnki.gkmlu.2021.000385.
    [18] 王浩. 大红山铜矿深埋变质灰岩动态响应特征研究 [D]. 昆明: 昆明理工大学, 2021: 68–69. DOI: 10.27200/d.cnki.gkmlu.2021.001943.

    WANG H. Study on the dynamic response characteristics of deeply buried metamorphic limestone in the Dahongshan copper mine [D]. Kunming: Kunming University of Science and Technology, 2021: 68–69. DOI: 10.27200/d.cnki.gkmlu.2021.001943.
    [19] 谢和平, 高峰. 岩石类材料损伤演化的分形特征 [J]. 岩石力学与工程学报, 1991, 10(1): 74–82.

    XIE H P, GAO F. The fractal features of the damage evolution of rock materials [J]. Chinese Journal of Rock Mechanics and Engineering, 1991, 10(1): 74–82.
    [20] 梁正召, 唐春安, 唐世斌, 等. 岩石损伤破坏过程中分形与逾渗演化特征 [J]. 岩土工程学报, 2007, 29(9): 1386–1391. DOI: 10.3321/j.issn:1000-4548.2007.09.017.

    LIANG Z Z, TANG C A, TANG S B, et al. Characteristics of fractal and percolation of rocks subjected to uniaxial compression during their failure process [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1386–1391. DOI: 10.3321/j.issn:1000-4548.2007.09.017.
    [21] 李祥龙, 何丽华, 栾龙发, 等. 露天煤矿高台阶抛掷爆破爆堆形态模拟 [J]. 煤炭学报, 2011, 36(9): 1457–1462. DOI: 10.13225/j.cnki.jccs.2011.09.014.

    LI X L, HE L H, LUAN L F, et al. Simulation model for muckpile shape of high bench cast blasting in surface coal mine [J]. Journal of China Coal Society, 2011, 36(9): 1457–1462. DOI: 10.13225/j.cnki.jccs.2011.09.014.
    [22] 杨军, 王国生. 分形几何在岩石爆破研究中的应用 [J]. 爆破, 1995(4): 1–5.
    [23] 丁希平, 冯叔瑜, 魏伴云. 硐室爆破法采石级配预测 [J]. 爆炸与冲击, 1997, 17(4): 326–332. DOI: 10.11883/1001-1455(1997)04-0326-7.

    DING X P, FENG S Y, WEI B Y. Prediction of rock fragment distribution for chamber blasting [J]. Explosion and Shock Waves, 1997, 17(4): 326–332. DOI: 10.11883/1001-1455(1997)04-0326-7.
    [24] 杨仁树, 李炜煜, 杨国梁, 等. 炸药类型对富铁矿爆破效果影响的试验研究 [J]. 爆炸与冲击, 2020, 40(6): 065201. DOI: 10.11883/bzycj-2019-0396.

    YANG R S, LI W Y, YANG G L, et al. Experimental study on the blasting effects of rich-iron ore with different explosives [J]. Explosion and Shock Waves, 2020, 40(6): 065201. DOI: 10.11883/bzycj-2019-0396.
    [25] MUNJIZA A, OWEN D R J, BICANIC N. A combined finite-discrete element method in transient dynamics of fracturing solids [J]. Engineering Computations, 1995, 12(2): 145–174. DOI: 10.1108/02644409510799532.
    [26] MUNJIZA A. Special issue on the discrete element method: aspects of recent developments in computational mechanics of discontinua [J]. Engineering Computations, 2009, 26(6). DOI: 10.1108/ec.2009.18226faa.001. https://webofscience.clarivate.cn/wos/alldb/full-record/WOS:000269477800001 .
    [27] YAN C Z, ZHENG Y C, WANG G. A 2D adaptive finite-discrete element method for simulating fracture and fragmentation in geomaterials [J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 169: 105439. DOI: 10.1016/j.ijrmms.2023.105439.
    [28] YAN C Z, LUO Z Q, ZHENG Y C, et al. A 2D discrete moisture diffusion model for simulating desiccation fracturing of soil [J]. Engineering Analysis with Boundary Elements, 2022, 138: 42–64. DOI: 10.1016/j.enganabound.2022.02.006.
    [29] YAN C Z, WANG T, KE W H, et al. A 2D FDEM-based moisture diffusion–fracture coupling model for simulating soil desiccation cracking [J]. Acta Geotechnica, 2021, 16(8): 2609–2628. DOI: 10.1007/s11440-021-01297-4.
    [30] YAN C Z, FAN H W, HUANG D R, et al. A 2D mixed fracture–pore seepage model and hydromechanical coupling for fractured porous media [J]. Acta Geotechnica, 2021, 16(10): 3061–3086. DOI: 10.1007/s11440-021-01183-z.
    [31] OÑATE E, ROJEK J. Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(27/28/29): 3087–3128. DOI: 10.1016/j.cma.2003.12.056.
    [32] YAN C Z, ZHAO Z H, YANG Y, et al. A three-dimensional thermal-hydro-mechanical coupling model for simulation of fracturing driven by multiphysics [J]. Computers and Geotechnics, 2023, 155: 105162. DOI: 10.1016/j.compgeo.2022.105162.
    [33] YAN C Z, MA H, TANG Z C, et al. A two-dimensional moisture diffusion continuous model for simulating dry shrinkage and cracking of soil [J]. International Journal of Geomechanics, 2022, 22(10): 04022172. DOI: 10.1061/(ASCE)GM.1943-5622.0002570.
    [34] YAN C Z, ZHENG H, SUN G H, et al. Combined finite-discrete element method for simulation of hydraulic fracturing [J]. Rock Mechanics and Rock Engineering, 2016, 49(4): 1389–1410. DOI: 10.1007/s00603-015-0816-9.
    [35] LISJAK A, TATONE B S A, MAHABADI O K, et al. Hybrid finite-discrete element simulation of the EDZ formation and mechanical sealing process around a microtunnel in opalinus clay [J]. Rock Mechanics and Rock Engineering, 2016, 49(5): 1849–1873. DOI: 10.1007/s00603-015-0847-2.
    [36] WANG T, YAN C Z, HAN D, et al. Insights into the breaking mechanism and fragment pattern of soft rock assisted by free face under TBM wedge cutter indentation [J]. Engineering Fracture Mechanics, 2023, 291: 109580. DOI: 10.1016/j.engfracmech.2023.109580.
    [37] WANG T, YAN C Z, ZHENG H, et al. Optimum spacing and rock breaking efficiency of TBM double disc cutters penetrating in water-soaked mudstone with FDEM [J]. Tunnelling and Underground Space Technology, 2023, 138: 105174. DOI: 10.1016/j.tust.2023.105174.
    [38] FUKUDA D, NIHEI E, CHO S H, et al. Development of a numerical simulator for 3-D dynamic fracture process analysis of rocks based on hybrid FEM-DEM using extrinsic cohesive zone model [J]. Materials Transactions, 2020, 61(9): 1767–1774. DOI: 10.2320/matertrans.Z-M2020833.
    [39] DENG P H, LIU Q S, HUANG X, et al. Sensitivity analysis of fracture energies for the combined finite-discrete element method (FDEM) [J]. Engineering Fracture Mechanics, 2021, 251: 107793. DOI: 10.1016/j.engfracmech.2021.107793.
    [40] ZUO T, LI X L, WANG J G, et al. Insights into natural tuff as a building material: effects of natural joints on fracture fractal characteristics and energy evolution of rocks under impact load [J]. Engineering Failure Analysis, 2024, 163: 108584. DOI: 10.1016/j.engfailanal.2024.108584.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  21
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-30
  • 修回日期:  2024-10-26
  • 网络出版日期:  2024-11-13

目录

    /

    返回文章
    返回