• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

民机结构坠撞性能缩比实验方法研究

李肖成 惠旭龙 白春玉 刘小川 张欣玥 韩鹤朝 徐绯 冯威 杨先锋

李肖成, 惠旭龙, 白春玉, 刘小川, 张欣玥, 韩鹤朝, 徐绯, 冯威, 杨先锋. 民机结构坠撞性能缩比实验方法研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0227
引用本文: 李肖成, 惠旭龙, 白春玉, 刘小川, 张欣玥, 韩鹤朝, 徐绯, 冯威, 杨先锋. 民机结构坠撞性能缩比实验方法研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0227
LI Xiaocheng, XI Xulong, BAI Chunyu, LIU Xiaochuan, ZHANG Xinyue, HAN Hezhao, XU Fei, FENG Wei, YANG Xianfeng. Research on scaled experimental method of civil aircraft crash performance[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0227
Citation: LI Xiaocheng, XI Xulong, BAI Chunyu, LIU Xiaochuan, ZHANG Xinyue, HAN Hezhao, XU Fei, FENG Wei, YANG Xianfeng. Research on scaled experimental method of civil aircraft crash performance[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0227

民机结构坠撞性能缩比实验方法研究

doi: 10.11883/bzycj-2024-0227
详细信息
    作者简介:

    李肖成(1995- ),男,硕士,工程师,lixiaocheng623@163.com

    通讯作者:

    刘小川(1983- ),男,博士,研究员,liuxiaochuan@cae.ac.cn

  • 中图分类号: O348.3

Research on scaled experimental method of civil aircraft crash performance

  • 摘要: 缩比实验具有成本低、风险小、周期短等优势,在航空航天等领域应用广泛。以典型民机机身下部结构为对象,开展了民机结构坠撞缩比理论分析和实验方法研究。推导了民机坠撞缩放比例因子,设计并加工了1/4缩比实验件,开展了6 m/s工况下的坠撞实验,获得了全尺寸坠撞实验与缩比实验中机身结构关键位置处的速度和加速度响应、地面撞击载荷响应以及局部关键部位的变形和破坏模式,并对其进行了对比分析。结果表明:缩比实验件与全尺寸实验件在框和立柱处的变形和破坏模式具有较好一致性。缩比结构对全尺寸原型结构的坠撞载荷峰值预测误差为14.4%,座椅加速度峰值预测误差为14.8%,横梁处的加速度峰值预测误差为13.1%。缩比实验可以有效预测全尺寸原型结构的变形、破坏过程和关键部位的动态响应,可用于民机结构坠撞性能验证和评估。
  • 图  1  典型民机机身下部结构及1/4缩比实验件

    Figure  1.  Full-scale and 1/4 scale structure of typical civil aircraft fuselage lower structures

    图  2  典型民机机身下部结构缩比坠撞实验示意图

    Figure  2.  Schematic diagram of the small-scale crash test of a typical civil aircraft fuselage lower structure

    图  3  典型民机机身下部结构全尺寸以及缩比坠撞实验

    Figure  3.  Full-size and 1/4 scale crash tests of typical civil aircraft fuselage lower structures

    图  4  坠撞实验测量设备及传感器布置示意图

    Figure  4.  Schematic diagram of crash test measurement equipment and sensor layout

    图  5  实验件坠撞速度对比

    Figure  5.  The comparison of impact velocities

    图  6  实验件不同时刻的变形与破坏过程对比

    Figure  6.  The comparison of deformation and failure process of frame segment at different time

    图  7  框变形破坏对比

    Figure  7.  Comparison of deformation and failure of frame

    图  8  实验件坠撞载荷对比

    Figure  8.  Comparison of crash load

    图  9  座椅加速度对比

    Figure  9.  Comparison of seat acceleration

    图  12  不同位置处加速度峰值对比

    Figure  12.  Comparison of acceleration at different position

    图  10  横梁处加速度对比

    Figure  10.  Comparison of beam acceleration

    图  11  座椅滑轨上加速度对比

    Figure  11.  Comparison of rail acceleration

    表  1  机身结构坠撞实验主要物理量及无量纲数

    Table  1.   Main physical quantities and dimensionless numbers of fuselage structure crash test

    物理量 量纲 无量纲数 物理量 量纲 无量纲数
    t $ {\left[t\right]=\rho }^{0}{L}^{1}{v}^{-1} $ $ {\varPi }_{1}=\dfrac{tv}{L} $ ε $ {\left[\varepsilon \right]=\rho }^{0}{L}^{0}{v}^{0} $ $ {\varPi }_{6}=\varepsilon $
    δ $ {\left[\delta \right]=\rho }^{0}{L}^{1}{v}^{0} $ $ {\varPi }_{2}=\dfrac{\delta }{L} $ F $ {\left[F\right]=\rho }^{1}{L}^{2}{v}^{2} $ $ {\varPi }_{7}=\dfrac{F}{\rho {L}^{2}{v}^{2}} $
    m $ {\left[m\right]=\rho }^{1}{L}^{3}{v}^{0} $ $ {\varPi }_{3}=\dfrac{m}{\rho {L}^{3}} $ En $ {\left[{E}_{\mathrm{n}}\right]=\rho }^{1}{L}^{3}{v}^{2} $ $ {\varPi }_{8}=\dfrac{{E}_{\mathrm{n}}}{\rho {L}^{3}{v}^{2}} $
    a $ {\left[a\right]=\rho }^{0}{L}^{-1}{v}^{2} $ $ {\varPi }_{4}=\dfrac{aL}{{v}^{2}} $ $ {\sigma }_{\mathrm{d}} $ $ {\left[{\sigma }_{\mathrm{d}}\right]=\rho }^{1}{L}^{0}{v}^{2} $ $ {\varPi }_{9}=\dfrac{{\sigma }_{\mathrm{d}}}{{\rho v}^{2}} $
    $ \sigma $ $ {\left[\sigma \right]=\rho }^{1}{L}^{0}{v}^{2} $ $ {\varPi }_{5}=\dfrac{\sigma }{{\rho v}^{2}} $ E $ {\left[E\right]=\rho }^{1}{L}^{0}{v}^{2} $ $ {\varPi }_{10}=\dfrac{E}{{\rho v}^{2}} $
    下载: 导出CSV

    表  2  机身结构坠撞缩放比例因子

    Table  2.   The scaling factor of aircraft structure crash test

    物理量 缩放比例因子 物理量 缩放比例因子 物理量 缩放比例因子
    $ L $ $ \beta ={L}_{\mathrm{m}}/{L}_{\mathrm{p}} $ $ \sigma $ $ {\beta }_{\sigma }={\beta }_{\rho }{\beta }_{v}^{2} $ a $ {\beta }_{a}={\beta }_{v}^{2}/\beta $
    $ \rho $ $ {\beta }_{\mathrm{\rho }}={\rho }_{\mathrm{m}}/{\rho }_{\mathrm{p}} $ $ \varepsilon $ $ {\beta }_{\varepsilon }=1 $ m $ {{\beta }_{m}={\beta }_{\rho }\beta }^{3} $
    $ v $ $ {\beta }_{v}={v}_{\mathrm{m}}/{v}_{\mathrm{p}}={({\beta }_{{\sigma }_{\mathrm{d}}}/{\beta }_{\rho })}^{1/2} $ $ F $ $ {{\beta }_{F}={\beta }_{\rho }\beta }^{2}{\beta }_{v}^{2} $ E $ {\beta }_{E}={\beta }_{\rho }{\beta }_{v}^{2} $
    $ t $ $ {\beta }_{t}=\beta /{\beta }_{v} $ $ {\sigma }_{\mathrm{d}} $ $ {\beta }_{{\sigma }_{\mathrm{d}}}={\beta }_{\rho }{\beta }_{v}^{2} $ $ {E}_{\mathrm{n}} $ $ {{\beta }_{{E}_{\mathrm{n}}}={\beta }_{\rho }\beta }^{3}{\beta }_{v}^{2} $
    $ \delta $ $ {\beta }_{\delta }=\beta $
    下载: 导出CSV

    表  3  缩比实验件与全尺寸实验件各物理量的缩放比例

    Table  3.   The scaling ratio of physical quantities between the small-scale and the full-size test

    物理量 缩放比例 物理量 缩放比例 物理量 缩放比例
    $ L $ $ \beta =1/4 $ $ \sigma $ $ {\beta }_{\sigma }=1 $ a $ {\beta }_{a}=4 $
    $ \rho $ $ {\beta }_{\rho }=1 $ $ \varepsilon $ $ {\beta }_{\varepsilon }=1 $ m $ {\beta }_{m}=1/64 $
    v $ {\beta }_{v}=1 $ $ F $ $ {\beta }_{F}=1/16 $ E $ {\beta }_{E}=1 $
    $ t $ $ {\beta }_{t}=1/4 $ $ {\sigma }_{\mathrm{d}} $ $ {\beta }_{{\sigma }_{\mathrm{d}}}=1 $ $ {E}_{\mathrm{n}} $ $ {\beta }_{{E}_{\mathrm{n}}}=1/64 $
    $ \delta $ $ {\beta }_{\delta }=1/4 $
    下载: 导出CSV
  • [1] 刘小川, 白春玉, 惠旭龙, 等. 民机机身结构耐撞性研究的进展与挑战 [J]. 固体力学学报, 2020, 41(4): 293–323. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2020.035.

    LIU X C, BAI C Y, XI X L, et al. Progress and challenge of research on crashworthiness of civil airplane fuselage structures [J]. Chinese Journal of Solid Mechanics, 2020, 41(4): 293–323. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2020.035.
    [2] 牟浩蕾, 谢威威, 解江, 等. 坠撞环境下乘员伤害分析及飞机适坠性评估 [J]. 航空学报, 2024, 45(3): 228786. DOI: 10.7527/S1000-6893.2023.28786.

    MOU H L, XIE W W, XIE J, et al. Occupant injury analysis and aircraft crashworthiness evaluation under crash scenarios [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 228786. DOI: 10.7527/S1000-6893.2023.28786.
    [3] 张欣玥, 惠旭龙, 刘小川, 等. 典型金属民机机身结构坠撞特性试验 [J]. 航空学报, 2022, 43(6): 526234. DOI: 10.7527/S1000-6893.2022.26234.

    ZHANG X Y, XI X L, LIU X C, et al. Experimental study on crash characteristics of typical metal civil aircraft fuselage structure [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526234. DOI: 10.7527/S1000-6893.2022.26234.
    [4] WILLIAMS M S, HAYDUK R J. Vertical drop test of a transport fuselage section located forward of the wing: 19840002543 [R]. Washington: NASA, 1983.
    [5] LITTELL J D. A summary of results from two full-scale fokker F28 fuselage section drop tests: 20180004391 [R]. Washington: NASA, 2018.
    [6] 刘小川, 惠旭龙, 张欣玥, 等. 典型民用飞机全机坠撞实验研究 [J]. 航空学报, 2024, 45(5): 529664. DOI: 10.7527/S1000-6893.2023.29664.

    LIU X C, XI X L, ZHANG X Y, et al. Full-scale crash experimental study of typical civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529664. DOI: 10.7527/S1000-6893.2023.29664.
    [7] 杨磊峰, 常新哲, 徐绯, 等. 受轴向冲击薄壁圆管的几何畸变相似律研究 [J]. 爆炸与冲击, 2022, 42(5): 053205. DOI: 10.11883/bzycj-2021-0452.

    YANG L F, CHANG X Z, XU F, et al. Study on the scaling law of geometrically-distorted thin-walled cylindrical shells subjected to axial impact [J]. Explosion and Shock Waves, 2022, 42(5): 053205. DOI: 10.11883/bzycj-2021-0452.
    [8] 李肖成, 徐绯, 杨磊峰, 等. 薄板在冲击载荷下线弹性理想塑性响应的相似性研究 [J]. 爆炸与冲击, 2021, 41(11): 113103. DOI: 10.11883/bzycj-2020-0374.

    LI X C, XU F, YANG L F, et al. Study on the similarity of elasticity and ideal plasticity response of thin plate under impact loading [J]. Explosion and Shock Waves, 2021, 41(11): 113103. DOI: 10.11883/bzycj-2020-0374.
    [9] 王帅, 徐绯, 代震, 等. 结构冲击畸变问题的直接相似方法研究 [J]. 力学学报, 2020, 52(3): 774–786. DOI: 10.6052/0459-1879-19-327.

    WANG S, XU F, DAI Z, et al. A direct scaling method for the distortion problems of structural impact [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 774–786. DOI: 10.6052/0459-1879-19-327.
    [10] WANG S, XU F, ZHANG X Y, et al. Material similarity of scaled models [J]. International Journal of Impact Engineering, 2021, 156: 103951. DOI: 10.1016/j.ijimpeng.2021.103951.
    [11] CASABURO A, PETRONE G, FRANCO F, et al. A review of similitude methods for structural engineering [J]. Applied Mechanics Reviews, 2019, 71(3): 030802. DOI: 10.1115/1.4043787.
    [12] 秦健, 张振华. 原型和模型不同材料时加筋板冲击动态响应的相似预报方法 [J]. 爆炸与冲击, 2010, 30(5): 511–516. DOI: 10.11883/1001-1455(2010)05-0511-06.

    QIN J, ZHANG Z H. A scaling method for predicting dynamic responses of stiffened plates made of materials different from experimental models [J]. Explosion and Shock Waves, 2010, 30(5): 511–516. DOI: 10.11883/1001-1455(2010)05-0511-06.
    [13] 王悦鑫, 何欢, 吴添, 等. 基于损失函数的缩比模型冲击响应预报结果修正方法 [J]. 航空学报, 2022, 43(8): 225781. DOI: 10.7527/S1000-6893.2021.25781.

    WANG Y X, HE H, WU T, et al. Modified method for impact response prediction of scaled model based on loss function [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 225781. DOI: 10.7527/S1000-6893.2021.25781.
    [14] COUTINHO C P, BAPTISTA A J, RODRIGUES J D. Reduced scale models based on similitude theory: a review up to 2015 [J]. Engineering Structures, 2016, 119: 81–94. DOI: 10.1016/j.engstruct.2016.04.016.
    [15] OSHIRO R E, CALLE M A G, MAZZARIOL L M, et al. Experimental study of collision in scaled naval structures [J]. International Journal of Impact Engineering, 2017, 110: 149–161. DOI: 10.1016/j.ijimpeng.2017.01.024.
    [16] HORTA L G. A historical perspective on dynamics testing at the Langley Research Center [R]. Hampton: Langley Research Center, 2000.
    [17] 殷文骏, 程帅, 刘文祥, 等. 远场爆炸冲击波作用下高层建筑上部结构动态响应试验研究 [J]. 兵工学报, 2024, 45(11): 4039–4051. DOI: 10.12382/bgxb.2023.0960.

    YIN W J, CHENG S, LIU W X, et al. Experimental study on dynamic response of upper structure of high-rise building under far-field explosion shock wave loading [J]. Acta Armamentarii, 2024, 45(11): 4039–4051. DOI: 10.12382/bgxb.2023.0960.
    [18] CALLE M A G, OSHIRO R E, ALVES M. Ship collision and grounding: scaled experiments and numerical analysis [J]. International Journal of Impact Engineering, 2017, 103: 195–210. DOI: 10.1016/j.ijimpeng.2017.01.021.
    [19] 陈暘, 陈立霞, 汪正中. 直升机缩比模型水中横向稳性试验研究 [J]. 直升机技术, 2019(4): 57–59, 72. DOI: 10.3969/j.issn.1673-1220.2019.04.013.

    CHEN Y, CHEN L X, WANG Z Z. Experiment research on the helicopter scale model lateral stability in water [J]. Helicopter Technique, 2019(4): 57–59, 72. DOI: 10.3969/j.issn.1673-1220.2019.04.013.
    [20] 金鑫, 刘宇, 唐长红, 等. 舰载机缩比落震动载荷预计及试验技术 [J]. 力学与实践, 2021, 43(4): 521–528. DOI: 10.6052/1000-0879-20-472.

    JIN X, LIU Y, TANG C H, et al. Prediction and testing technology of vibration load for scaled-model of carrier based aircraft [J]. Mechanics in Engineering, 2021, 43(4): 521–528. DOI: 10.6052/1000-0879-20-472.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  16
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-09
  • 修回日期:  2025-01-13
  • 网络出版日期:  2025-01-14

目录

    /

    返回文章
    返回