航行体高速入水时多孔泡沫的缓冲降载特性

原凯 吴琪衡 孙铁志 杨娜娜

原凯, 吴琪衡, 孙铁志, 杨娜娜. 航行体高速入水时多孔泡沫的缓冲降载特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0232
引用本文: 原凯, 吴琪衡, 孙铁志, 杨娜娜. 航行体高速入水时多孔泡沫的缓冲降载特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0232
YUAN Kai, WU Qiheng, SUN Tiezhi, YANG Nana. Study on load reduction characteristics of porous foam buffer for high-speed water entry vehicle[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0232
Citation: YUAN Kai, WU Qiheng, SUN Tiezhi, YANG Nana. Study on load reduction characteristics of porous foam buffer for high-speed water entry vehicle[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0232

航行体高速入水时多孔泡沫的缓冲降载特性

doi: 10.11883/bzycj-2024-0232
基金项目: 基础科研计划项目(JCKY2021203B003)
详细信息
    作者简介:

    原 凯(1989- ),男,博士研究生,高级工程师,beihangkai@126.com

    通讯作者:

    杨娜娜(1980- ),女,博士,教授 博士生导师,yangnana@hrbeu.edu.cn

  • 中图分类号: O368

Study on load reduction characteristics of porous foam buffer for high-speed water entry vehicle

  • 摘要: 针对航行体高速入水时的缓冲降载问题,设计了适用的缓冲头罩及多种开孔形式的缓冲泡沫构型,基于任意拉格朗日-欧拉方法,建立了航行体高速入水缓冲降载数值计算模型。并通过数值模拟对不同开孔形式的缓冲泡沫降载性能进行了深入研究。结果表明,多孔缓冲泡沫在分散航行体入水冲击力及吸收冲击能量方面表现出显著优势,具有更好的缓冲效果。同时,缓冲头罩在入水时会发生局部渐进破碎,缓冲罩壳与航行体之间的连接器处的缓冲头罩外壁面的变形和破裂是由于撞水时产生的应力集中分布引起的。多孔泡沫接触水面时,前端部分会进入坍塌阶段,吸收大量能量并产生塑性变形,孔隙减少,此阶段为缓冲泡沫的主要能量吸收阶段。相比之下,不开孔泡沫的降载性能较差。因此,采用多孔泡沫是一种更优的航行体高速入水缓冲降载方案。
  • 图  1  实验数值计算模型

    Figure  1.  Numerical calculation model of the experiments

    图  2  航行体以89.67 m/s速度入水空泡演化过程的对比

    Figure  2.  Comparison of the cavitation evolution process of the vehicle entering water at 89.67 m/s

    图  3  航行体以89.67 m/s速度入水加速度曲线对比

    Figure  3.  Comparison of the acceleration curve of the vehicle entering water at a velocity of 89.67 m/s

    图  4  缓冲模型

    Figure  4.  Buffering model

    图  5  航行体以 89.67 m/s速度入水的试验与数值模拟对比

    Figure  5.  Comparison between the test and numerical values of the vehicle entering the water at a velocity of 89.67 m/s

    图  6  钝头航行体以89.67 m/s速度入水加速度曲线的对比

    Figure  6.  Comparison of the acceleration curve of a blunt body entering water at a velocity of 89.67 m/s

    图  7  不同网格尺寸轴向加速度对比曲线

    Figure  7.  Comparison curves of axial acceleration with different mesh sizes

    图  8  航行体、整流罩及缓冲泡沫计算模型

    Figure  8.  Calculation model of vehicle, fairing, and buffer foam

    图  9  缓冲头帽示意图

    Figure  9.  Buffer head cap diagram

    图  10  数值计算域及带缓冲部件航行体网格划分示意图

    Figure  10.  Numerical calculation domain and grid division diagram of the vehicle with buffer component

    图  11  不同开孔构型的缓冲泡沫示意图

    Figure  11.  Schematic diagram of buffer foam with different open cell configurations

    图  12  工况2的入水流场演化与破坏过程

    Figure  12.  Evolution and failure process of the inflow flow field in case 2

    图  13  工况2 入水加速度随时间变化曲线

    Figure  13.  Water acceleration-time curve for case 2

    图  14  无缓冲工况、工况1和工况2的航行体总能量随时间变化曲线

    Figure  14.  Time variation curves of total vehicle energy in unbuffered case and cases 1 and 2

    图  15  无缓冲工况、工况1和工况2的航行体加速度随时间变化曲线

    Figure  15.  Time variation curve of acceleration in unbuffered case and cases 1 and 2

    图  16  不同工况下入水流场演化与破坏过程

    Figure  16.  Evolution and failure processes of inflow flow field in different case

    图  17  无缓冲条件下入水空泡演化

    Figure  17.  Evolution of water inlet cavitation in unbuffered case

    图  18  6种工况条件下整流罩的动态损伤

    Figure  18.  Dynamic damage of fairing under six working conditions

    图  19  6种工况条件下泡沫应变云图及破坏过程

    Figure  19.  Strain contours and failure process of foam under six working conditions

    图  20  不同工况下航行体位移时域曲线

    Figure  20.  Time history curves of shifting position in different working cases

    图  21  无缓冲工况下航行体加速度时域曲线

    Figure  21.  Time history curve of vehicle acceleration under unbuffered condition

    图  22  不同工况下航行体加速度时域曲线

    Figure  22.  Time history curves of vehicle acceleration in different working cases

    图  23  不同工况下降载率对比

    Figure  23.  Comparison of load reduction in different working cases

    表  1  材料参数

    Table  1.   Material parameters

    材料密度/
    (kg·m−3)
    杨氏模量/
    GPa
    泊松比屈服应力/
    MPa
    切线模量/
    MPa
    缓冲头帽1 2008.50.3345.09
    缓冲泡沫1001.00.241.4
    下载: 导出CSV

    表  2  数值模拟工况

    Table  2.   Simulation cases

    工况 速度/(m·s−1) 缓冲泡沫
    1 80 不开孔
    2 80 弯孔1
    3 80 轴向孔2
    4 80 周向孔
    5 80 轴向孔1
    6 80 弯孔2
    下载: 导出CSV
  • [1] 吕红庆, 许磊, 王振清. 不同头型旋成体入水初期流场特性数值分析 [J]. 兵器装备工程学报, 2022, 43(12): 34–42. DOI: 10.11809/bqzbgcxb2022.12.006.

    LYU H Q, XU L, WANG Z Q. Numerical research on flow field characteristics of axisymmetric bodies with different head shapes during initial water entry [J]. Journal of Ordnance Equipment Engineering, 2022, 43(12): 34–42. DOI: 10.11809/bqzbgcxb2022.12.006.
    [2] TANG S Q, ZHANG Y, SUN S L, et al. Experimental investigation on the air-cushion effect during free fall of a trimaran section using an air escape control method [J]. Ocean Engineering, 2022, 254: 111417. DOI: 10.1016/j.oceaneng.2022.111417.
    [3] WU S Y, SHAO Z Y, FENG S S, et al. Water-entry behavior of projectiles under the protection of polyurethane buffer head [J]. Ocean Engineering, 2020, 197: 106890. DOI: 10.1016/j.oceaneng.2019.106890.
    [4] KUBOTA Y, MOCHIZUKI O. Influence of head shape of solid body plunging into water on splash formation [J]. Journal of Visualization, 2011, 14(2): 111–119. DOI: 10.1007/s12650-011-0071-4.
    [5] 石汉成, 蒋培, 程锦房. 头部形状对水雷入水载荷及水下弹道影响的数值仿真分析 [J]. 舰船科学技术, 2010, 32(10): 104–107. DOI: 10.3404/j.issn.1672-7649.2010.10.027.

    SHI H C, JIANG P, CHENG J F. Research on numerical simulation of mine water-entry impact acceleration and underwater ballistic trajectory under the different mine’s head shape [J]. Ship Science and Technology, 2010, 32(10): 104–107. DOI: 10.3404/j.issn.1672-7649.2010.10.027.
    [6] SHI Y, PAN G, YIM S C, et al. Numerical investigation of hydroelastic water-entry impact dynamics of AUVs [J]. Journal of Fluids and Structures, 2019, 91: 102760. DOI: 10.1016/j.jfluidstructs.2019.102760.
    [7] GUO Z T, ZHANG W, XIAO X K, et al. An investigation into horizontal water entry behaviors of projectiles with different nose shapes [J]. International Journal of Impact Engineering, 2012, 49(2): 43–60. DOI: 10.1016/j.ijimpeng.2012.04.004.
    [8] 潘龙, 王焕然, 姚尔人, 等. 头部喷气平头圆柱体人水缓冲机制研究 [J]. 工程热物理学报, 2015, 36(8): 1691–1695.

    PAN L, WANG H R, YAO E R, et al. Mechanism research on the water-enter impact of the head-jetting flat cylinder [J]. Journal of Engineering Thermophysics, 2015, 36(8): 1691–1695.
    [9] SUN T Z, WANG S S, BAI P Y, et al. Cavity dynamics of water entry for a head-ventilated cylinder [J]. Physics of Fluids, 2022, 34(7): 073302. DOI: 10.1063/5.0094249.
    [10] 王峻, 刘珑翔, 陈瑛. 头部喷气圆柱高速入水空泡与降载特性的数值模拟研究 [J]. 水动力学研究与进展A辑, 2023, 38(2): 195–204. DOI: 10.16076/j.cnki.cjhd.2023.02.005.

    WANG J, LIU L X, CHENG Y. Numerical investigation on the high-speed water entry cavity and load reduction of air-jetting cylinder [J]. Chinese Journal of Hydrodynamics, 2023, 38(2): 195–204. DOI: 10.16076/j.cnki.cjhd.2023.02.005.
    [11] 赵海瑞, 施瑶, 潘光. 头部喷气航行器高速入水空泡特性数值分析 [J]. 西北工业大学学报, 2021, 39(4): 810–817. DOI: 10.1051/jnwpu/20213940810.

    ZHAO H R, SHI Y, PAN G. Numerical analysis of cavitation characteristics for high speed water entry of headjet vehicle [J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 810–817. DOI: 10.1051/jnwpu/20213940810.
    [12] 宣建明, 宋志平, 严忠汉. 鱼雷入水缓冲保护头帽解体试验研究 [J]. 鱼雷技术, 1999, 7(2): 41–46.

    XUAN J M, SONG Z P, YAN Z H. Experimental study on disintegration of torpedo nose cap during water entry [J]. Torpedo Technology, 1999, 7(2): 41–46.
    [13] HORTON D M. Shock-mitigating nose for underwater vehicles: U. S. Patent 6536365 [P]. 2003.
    [14] AVALLE M, BELINGARDI G, MONTANINI R. Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram [J]. International Journal of Impact Engineering, 2001, 25(5): 455–472. DOI: 10.1016/S0734-743X(00)00060-9.
    [15] 曾斐, 潘艺, 胡时胜. 泡沫铝缓冲吸能评估及其特性 [J]. 爆炸与冲击, 2002, 22(4): 358–362. DOI: 10.11883/1001-1455(2002)04-0358-5.

    ZENG F, PAN Y, HU S S. Evaluation of cushioning properties and energy-absorption capability of foam aluminium [J]. Explosion and Shock Waves, 2002, 22(4): 358–362. DOI: 10.11883/1001-1455(2002)04-0358-5.
    [16] SHI Y, GAO X, PAN G. Design and load reduction performance analysis of mitigator of AUV during high speed water entry [J]. Ocean Engineering, 2019, 181: 314–329. DOI: 10.1016/j.oceaneng.2019.03.062.
    [17] 孙龙泉, 王都亮, 李志鹏, 等. 基于CEL方法的航行体高速入水泡沫铝缓冲装置降载性能分析 [J]. 振动与冲击, 2021, 40(20): 80–88. DOI: 10.13465/j.cnki.jvs.2021.20.011.

    SUN L Q, WANG D L, LI Z P, et al. Analysis on load reduction performance of foamed aluminum buffer device for high-speed water entry of vehicle based on a CEL method [J]. Journal of Vibration and Shock, 2021, 40(20): 80–88. DOI: 10.13465/j.cnki.jvs.2021.20.011.
    [18] HENNEAUX D, SCHROOYEN P, CHATELAIN P, et al. High-order enforcement of jumps conditions between compressible viscous phases: an extended interior penalty discontinuous Galerkin method for sharp interface simulation [J]. Computer Methods in Applied Mechanics and Engineering, 2023, 415: 116215. DOI: 10.1016/j.cma.2023.116215.
    [19] LI Y, ZONG Z, SUN T Z. Classification of the collapse of a composite fairing during the oblique high-speed water entry [J]. Thin-Walled Structures, 2023, 182(12): 110260. DOI: 10.1016/j.tws.2022.110260.
    [20] 魏洪亮, 赵静, 徐志程, 等. 基于流固耦合的航行体高速入水规律研究 [J]. 导弹与航天运载技术, 2020(2): 33–37. DOI: 10.7654/j.issn.1004-7182.20200207.

    WEI H L, ZHAO J, XU Z C, et al. Study on high-speed water entry law of trans-media vehicle based on fluid solid coupling [J]. Missiles and Space Vehicles, 2020(2): 33–37. DOI: 10.7654/j.issn.1004-7182.20200207.
    [21] 孙琦, 周军, 林鹏. 基于LS-DYNA的弹体撞水过程流固耦合动力分析 [J]. 系统仿真学报, 2010, 22(6): 1498–1501. DOI: 10.16182/j.cnki.joss.2010.06.005.

    SUN Q, ZHOU J, LIN P. Dynamic analysis of fluid-structure interaction for water impact of projectile using LS-DYNA [J]. Journal of System Simulation, 2010, 22(6): 1498–1501. DOI: 10.16182/j.cnki.joss.2010.06.005.
    [22] 李尧. 航行体高速入水缓冲头帽的降载机制与行为特性研究 [D]. 大连: 大连理工大学, 2023: 23–25, 53–56.

    LI Y. Load reduction mechanism and behavior characteristics of the buffering cap for the vehicle during the high-speed water entry [D]. Dalian: Dalian University of Technology, 2023: 23–25, 53–56.
    [23] 魏海鹏, 史崇镔, 孙铁志, 等. 基于ALE方法的航行体高速入水缓冲降载性能数值研究 [J]. 爆炸与冲击, 2021, 41(10): 104201. DOI: 10.11883/bzycj-2020-0461.

    WEI H P, SHI C B, SUN T Z, et al. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method [J]. Explosion and Shock Waves, 2021, 41(10): 104201. DOI: 10.11883/bzycj-2020-0461.
  • 加载中
图(23) / 表(2)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  13
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-12
  • 修回日期:  2024-09-19
  • 网络出版日期:  2024-09-19

目录

    /

    返回文章
    返回