钢纤维增强多孔混凝土板水下接触爆炸防爆机理及损伤等级预测

汤长兴 曹克磊 赵瑜 张建伟 黄锦林 吕孟杰

汤长兴, 曹克磊, 赵瑜, 张建伟, 黄锦林, 吕孟杰. 钢纤维增强多孔混凝土板水下接触爆炸防爆机理及损伤等级预测[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0239
引用本文: 汤长兴, 曹克磊, 赵瑜, 张建伟, 黄锦林, 吕孟杰. 钢纤维增强多孔混凝土板水下接触爆炸防爆机理及损伤等级预测[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0239
TANG Changxing, CAO Kelei, ZHAO Yu, ZHANG Jianwei, HUANG Jinlin, LYU Mengjie. Study on explosion-proof mechanism and damage level prediction of steel fiber reinforced cellular concrete slab in underwater contact explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0239
Citation: TANG Changxing, CAO Kelei, ZHAO Yu, ZHANG Jianwei, HUANG Jinlin, LYU Mengjie. Study on explosion-proof mechanism and damage level prediction of steel fiber reinforced cellular concrete slab in underwater contact explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0239

钢纤维增强多孔混凝土板水下接触爆炸防爆机理及损伤等级预测

doi: 10.11883/bzycj-2024-0239
基金项目: 国家自然科学基金(51779168);河南省高等学校重点科研项目(24A570002);天津大学水利工程智能建设与运维全国重点实验室开放基金(HESS-2230)
详细信息
    作者简介:

    汤长兴(1999- ),男,硕士研究生,tangchangxing2023@163.com

    通讯作者:

    曹克磊(1990- ),男,博士,讲师,caokelei456@163.com

  • 中图分类号: O383; TJ55

Study on explosion-proof mechanism and damage level prediction of steel fiber reinforced cellular concrete slab in underwater contact explosion

  • 摘要: 为探究钢纤维增强多孔混凝土材料的水下抗爆防护效果,采用光滑粒子流体动力学与有限元耦合方法建立了“水体-炸药-防护层-钢筋混凝土板”的三维精细化仿真模型,研究了不同纤维配比钢纤维增强多孔混凝土防护层(SAP10S5、SAP10S10、SAP10S15和SAP10S20)和不同炸药质量影响下被防护钢筋混凝土板的损伤演化过程、破坏模式及失效机理,并构建了钢筋混凝土板的损伤等级预测曲线。研究结果表明:水下接触爆炸荷载下,增设钢纤维增强多孔混凝土防护层能够有效降低被防护钢筋混凝土(reinforced concrete,RC)板的损伤程度,且其对RC板损伤程度的影响随防护层中钢纤维体积分数的增加呈先减小后增大的规律,其中SAP10S15配比防护层的抗爆防护效果最优;炸药量在一定范围内增大时,SAP10S15配比防护层依然能维持较高的耗能占比,有效降低RC板的损伤程度;当炸药量为0.25 kg时,相较于无防护方案,SAP10S15配比防护层加固下RC板的损伤指数衰减最明显,为42.5%,损伤等级由严重破坏降为中度破坏。构建的损伤等级预测曲线能够直观评估钢纤维体积分数和炸药量对RC板损伤等级的影响。
  • 图  1  水下接触爆炸试验及钢筋布置

    Figure  1.  Underwater contact explosion experiment and reinforcement arrangement

    图  2  水下接触爆炸下钢筋混凝土板的数值模型

    Figure  2.  Numerical model of reinforced concrete slab subjected to underwater contact explosion

    图  3  水下接触爆炸荷载作用下混凝土板损伤破坏形态的试验与数值模拟结果对比

    Figure  3.  Comparison of experimental and numerical simulation results of damage and failure modes of concrete slabs under underwater contact explosion load

    图  4  炸药-水体-防护层-混凝土板的防爆模型

    Figure  4.  Explosion-proof model of explosive-water-protective layer-concrete slab

    图  5  钢筋混凝土板的损伤演化过程

    Figure  5.  Damage evolution in reinforced concrete slabs

    图  6  钢纤维增强多孔混凝土的结构毁伤机理

    Figure  6.  Structural damage mechanism of steel fiber reinforced cellular concrete

    图  7  无防护层RC板的破坏模式

    Figure  7.  Damage patterns of RC panels without protective layers

    图  8  RC板的破坏模式

    Figure  8.  Damage patterns of RC panels

    图  9  失效体积率

    Figure  9.  Failure volume rate

    图  10  耗能分担率

    Figure  10.  Energy consumption sharing ratio

    图  11  损伤指数

    Figure  11.  Damage index

    图  12  RC板损伤等级与防护层配比、炸药量关系的预测曲线

    Figure  12.  Prediction curves of RC plate damage level in relation to protective layer ratio and explosive volume

    图  13  由经验公式求得的拟合曲面

    Figure  13.  The fitted surface derived from the empirical formula

    图  14  仿真结果与经验公式拟合结果的关系

    Figure  14.  Relationship between simulation results and empirical formula fitting results

    表  1  炸药的材料参数

    Table  1.   Material parameters of explosive

    ρ/(kg·m−3) A/GPa B/GPa R1 R2 ω1 Etnt/(GJ·m−3)
    1650 373.77 3.75 4.15 0.9 0.35 8
    下载: 导出CSV

    表  2  水体的材料参数

    Table  2.   Material parameters of water

    ρ/(kg·m−3) C/(m·s−1) S1 S2 S3 γ0 α
    1000 1647 1.921 −0.096 0 1 0
    下载: 导出CSV

    表  3  不同配比钢纤维增强多孔混凝土的改进K&C模型参数

    Table  3.   Improved K&C model parameters for steel fibers cellular concrete reinforced in different ratios

    防护方案配比 ρ/(g·cm−3) fc/MPa ν b1 b2 b3 a0/MPa
    SAP10S5 2.189 34.46 0.19 1.6 1.96 1.15 8.22
    SAP10S10 2.232 39.35 0.19 1.6 2.04 1.15 9.18
    SAP10S15 2.270 42.86 0.19 1.6 2.09 1.15 10.03
    SAP10S20 2.307 41.04 0.19 1.6 2.06 1.15 9.63
    防护方案配比 a1 a2/GPa−1 a0y/MPa a1y a2y/GPa−1 a1f a2f/GPa−1
    SAP10S5 0.38 4.26 6.80 0.53 12.91 0.38 6.23
    SAP10S10 0.38 3.77 7.66 0.53 11.45 0.38 5.52
    SAP10S15 0.38 3.46 8.36 0.53 10.49 0.38 5.06
    SAP10S20 0.38 3.61 8.02 0.53 10.94 0.38 5.28
    下载: 导出CSV

    表  4  防护方案设计

    Table  4.   Protection program design

    工况 炸药质量/kg 防护层板厚/mm 防护方案配比 RC板厚/mm
    1 0.250 100 SAP10S5 150
    2 0.250 100 SAP10S10
    3 0.250 100 SAP10S15
    4 0.250 100 SAP10S20
    5 0.375 100 SAP10S15
    6 0.500 100 SAP10S15
    7 0.625 100 SAP10S15
    8 0.750 100 SAP10S15
    下载: 导出CSV
  • [1] ZHAO X H, WANG G H, LU W B, et al. Experimental investigation of RC slabs under air and underwater contact explosions [J]. European Journal of Environmental and Civil Engineering, 2021, 25(1): 190–204. DOI: 10.1080/19648189.2018.1528892.
    [2] YANG G D, WANG G H, LU W B, et al. Experimental and numerical study of damage characteristics of RC slabs subjected to air and underwater contact explosions [J]. Marine Structures, 2019, 66: 242–257. DOI: 10.1016/j.marstruc.2019.04.009.
    [3] 张社荣, 孔源, 王高辉. 水下和空中爆炸时混凝土重力坝动态响应对比分析 [J]. 振动与冲击, 2014, 33(17): 47–54. DOI: 10.13465/j.cnki.jvs.2014.17.009.

    ZHANG S R, KONG Y, WANG G H. Dynamic responses of a concrete gravity dam subjected to underwater and air explosions [J]. Journal of Vibration and Shock, 2014, 33(17): 47–54. DOI: 10.13465/j.cnki.jvs.2014.17.009.
    [4] WANG G H, ZHANG S R, KONG Y, et al. Comparative study of the dynamic response of concrete gravity dams subjected to underwater and air explosions [J]. Journal of Performance of Constructed Facilities, 2015, 29(4): 04014092. DOI: 10.1061/(ASCE)CF.1943-5509.0000589.
    [5] WANG Y, LIAO T Y, CHI H, et al. Damage behavior of concrete members subjected to underwater contact explosion [J]. Engineering Failure Analysis, 2023, 151: 107412. DOI: 10.1016/J.ENGFAILANAL.2023.107412.
    [6] WEI W L, CHEN Y Q, REN X J, et al. Experimental and numerical study on the influence of plastic-modified concrete as attenuation layer on explosion effect [J]. International Journal of Structural Stability and Dynamics, 2022, 22(11): 2250116. DOI: 10.1142/S0219455422501164.
    [7] WANG W, SONG X D, HUO Q, et al. Experimental and numerical study on local damage effect of ultra-early-strength reinforced concrete slabs (URCS) under contact explosion [J]. Engineering Structures, 2023, 294: 116741. DOI: 10.1016/J.ENGSTRUCT.2023.116741.
    [8] KIM J, LEE J, JUNG W, et al. Testing the anti-explosion protection of HPFRCC for ready-mixed concrete system based on fiber selection and resistance to live explosives [J]. Case Studies in Construction Materials, 2022, 17: e01249. DOI: 10.1016/J.CSCM.2022.E01249.
    [9] SHI S Q, LIAO Y, PENG X Q, et al. Behavior of polyurea-woven glass fiber mesh composite reinforced RC slabs under contact explosion [J]. International Journal of Impact Engineering, 2019, 132: 103335. DOI: 10.1016/j.ijimpeng.2019.103335.
    [10] LIU S C, ZHAO X H, FANG H Y, et al. Study on the protective performance of polymer layer to RC slabs under underwater explosions [J]. Ocean Engineering, 2023, 282: 114997. DOI: 10.1016/J.OCEANENG.2023.114997.
    [11] 刘佳, 崔传安, 徐畅. 爆炸波在硬质聚氨酯泡沫中的衰减特性模拟 [J]. 兵器装备工程学报, 2017, 38(9): 164–167. DOI: 10.11809/scbgxb2017.09.035.

    LIU J, CUI C A, XU C. Simulation of explosive wave attenuation characteristics in rigid polyurethane foam [J]. Journal of Ordnance Equipment Engineering, 2017, 38(9): 164–167. DOI: 10.11809/scbgxb2017.09.035.
    [12] LIU Z D, ZHAO X H, FANG H Y, et al. Investigation on the damage features and dynamic response of reinforced concrete slabs with polyurethane sacrificial cladding under close-range explosions [J]. Construction and Building Materials, 2023, 395: 132149. DOI: 10.1016/J.CONBUILDMAT.2023.132149.
    [13] 孔祥清, 李若男, 常雅慧, 等. 泡沫填充负泊松比蜂窝夹层结构的抗爆性能数值模拟 [J]. 兵工学报, 2024, 45(9): 3091–3104. DOI: 10.12382/bgxb.2023.0607.

    KONG X Q, LI R N, CHANG Y H, et al. Numerical simulation of blast resistance of foam-filled Auxetic honeycomb sandwich structures [J]. Acta Armamentarii, 2024, 45(9): 3091–3104. DOI: 10.12382/bgxb.2023.0607.
    [14] CAO K L, FU Q F, ZHANG J W, et al. Study on the protection mechanism and damage grade prediction of different corrugated steel-concrete composite structures under underwater contact explosion [J]. Ocean Engineering, 2024, 292: 116520. DOI: 10.1016/J.OCEANENG.2023.116520.
    [15] YU S Y, WU H X, ZHANG G K, et al. Experimental study on anti-shallow-buried-explosion capacity of a corrugated steel-plain concrete composite structure [J]. International Journal of Impact Engineering, 2023, 172: 104393. DOI: 10.1016/J.IJIMPENG.2022.104393.
    [16] 赵春风, 张利, 李晓杰. 近场爆炸下波纹双钢板混凝土组合墙板的损伤破坏及抗爆性能 [J]. 高压物理学报, 2024, 38(1): 014102. DOI: 10.11858/gywlxb.20230727.

    ZHAO C F, ZHANG L, LI X J. Damage failure and anti-blast performance of concrete-infilled double steel corrugated-plate wall under near field explosion [J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014102. DOI: 10.11858/gywlxb.20230727.
    [17] KUŠTER MARIĆ M, IVANOVIĆ A, FUSIĆ M, et al. Experimental investigation of the explosion effects on reinforced concrete slabs with fibers [J]. Buildings, 2024, 14(4): 1080. DOI: 10.3390/BUILDINGS14041080.
    [18] 袁名正, 潘腾, 卞晓兵, 等. 曲面型纤维复材防护掩体在爆炸冲击波下的响应特性 [J]. 兵工学报, 2023, 44(12): 3909–3920. DOI: 10.12382/bgxb.2023.0735.

    YUAN M Z, PAN T, BIAN X B, et al. Response characteristics of curved fiber composite protective shelter under the action of explosive shock wave [J]. Acta Armamentarii, 2023, 44(12): 3909–3920. DOI: 10.12382/bgxb.2023.0735.
    [19] ZHAO X H, SUN J S, ZHAO H N, et al. Experimental and mesoscopic modeling numerical researches on steel fiber reinforced concrete slabs under contact explosion [J]. Structures, 2024, 61: 106114. DOI: 10.1016/J.ISTRUC.2024.106114.
    [20] 曹克磊. 钢纤维增强多孔混凝土复合材料静动态力学特性及其水下抗爆防护效果研究 [D]. 天津: 天津大学, 2020: 1–177. DOI: 10.27356/d.cnki.gtjdu.2020.003413.

    CAO K L. Research on the static and dynamic mechanical characteristics of steel fiber reinforced cellular concrete composites and its underwater anti-explosion protection effects [D]. Tianjin: Tianjin University, 2020: 1–177. DOI: 10.27356/d.cnki.gtjdu.2020.003413.
    [21] 甘露, 陈力, 宗周红, 等. 近距离爆炸比例爆距的界定标准及荷载模型 [J]. 爆炸与冲击, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.

    GAN L, CHEN L, ZONG Z H, et al. Definition of scaled distance of close-in explosion and blast load calculation model [J]. Explosion and Shock Waves, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.
    [22] HAI L, REN X D. Computational investigation on damage of reinforced concrete slab subjected to underwater explosion [J]. Ocean Engineering, 2020, 195: 106671. DOI: 10.1016/j.oceaneng.2019.106671.
    [23] ZHAO C F, LU X, WANG Q, et al. Experimental and numerical investigation of steel-concrete (SC) slabs under contact blast loading [J]. Engineering Structures, 2019, 196: 109337. DOI: 10.1016/j.engstruct.2019.109337.
    [24] PAN Z F, ZHANG H P, ZENG B, et al. Statistical evaluation of CEB-FIP 2010 model for concrete creep and shrinkage [J]. Materials, 2023, 16(4): 1576. DOI: 10.3390/MA16041576.
    [25] 尹华伟, 蒋轲, 张料, 等. 钢纤维混凝土板在冲击与爆炸荷载下的K&C模型 [J]. 高压物理学报, 2020, 34(3): 034205. DOI: 10.11858/gywlxb.20190853.

    YIN H W, JIANG K, ZHANG L, et al. K&C model of steel fiber reinforced concrete plate under impact and blast load [J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034205. DOI: 10.11858/gywlxb.20190853.
    [26] REIFARTH C, CASTEDO R, SANTOS A P, et al. Numerical and experimental study of externally reinforced RC slabs using FRPs subjected to close-in blast loads [J]. International Journal of Impact Engineering, 2021, 156: 103939. DOI: 10.1016/J.IJIMPENG.2021.103939.
    [27] NAIKNIMBALKAR Y P, SINGH S B, MATSAGAR V A. Analytical assessment of dynamic response of fiber-reinforced polymer laminate on concrete wall under blast loads [J]. Sādhanā, 2024, 49(3): 218. DOI: 10.1007/S12046-024-02563-3.
    [28] KONG X, QI X, GU Y, et al. Numerical evaluation of blast resistance of RC slab strengthened with AFRP [J]. Construction and Building Materials, 2018, 178: 244–53. DOI: 10.1016/j.conbuildmat.2018.05.081.
    [29] CHILVERS J, YANG L, LIN X S, et al. Experimental and numerical investigations of hybrid-fibre engineered cementitious composite panels under contact explosions [J]. Engineering Structures, 2022, 266: 114582. DOI: 10.1016/J.ENGSTRUCT.2022.114582.
    [30] 袁良柱, 陈美多, 谢雨珊, 等. 细观非连续介质的应力波传播研究 [J]. 爆炸与冲击, 2024, 44(9): 091422. DOI: 10.11883/bzycj-2023-0365.

    YUAN L Z, CHEN M D, XIE Y S, et al. Investigation on stress wave propagation in mesoscopic discontinuous medium [J]. Explosion and Shock Waves, 2024, 44(9): 091422. DOI: 10.11883/bzycj-2023-0365.
    [31] ZHAO H N, ZHAO X H, FANG H Y, et al. Experimental investigation of steel fiber reinforced concrete slabs subjected to underwater contact explosions [J]. Ocean Engineering, 2023, 281: 114664. DOI: 10.1016/J.OCEANENG.2023.114664.
    [32] XIAO Y, ZHU W Q, LI M H, et al. Concrete spalling behavior and damage evaluation of concrete members with different cross-sectional properties under contact explosion [J]. International Journal of Impact Engineering, 2023, 181: 104753. DOI: 10.1016/J.IJIMPENG.2023.104753.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  35
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-16
  • 修回日期:  2024-09-05
  • 网络出版日期:  2024-09-06

目录

    /

    返回文章
    返回