航空动力锂电池热失控高温与冲击危害的被动防护包容性

杨娟 梁焰彭 刘媛 刘添添 张青松

杨娟, 梁焰彭, 刘媛, 刘添添, 张青松. 航空动力锂电池热失控高温与冲击危害的被动防护包容性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0240
引用本文: 杨娟, 梁焰彭, 刘媛, 刘添添, 张青松. 航空动力锂电池热失控高温与冲击危害的被动防护包容性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0240
YANG Juan, LIANG Yanpeng, LIU Yuan, LIU Tiantian, ZHANG Qingsong. Passive protection containment of high temperature and impact hazards from thermal runaway in aviation power lithium batteries[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0240
Citation: YANG Juan, LIANG Yanpeng, LIU Yuan, LIU Tiantian, ZHANG Qingsong. Passive protection containment of high temperature and impact hazards from thermal runaway in aviation power lithium batteries[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0240

航空动力锂电池热失控高温与冲击危害的被动防护包容性

doi: 10.11883/bzycj-2024-0240
基金项目: 国家自然科学基金(U2033204);中央高校基本科研业务费自然科学重点项目(3122024058);天津市城市空中交通系统技术与装备重点实验室开放基金(TJKL-UAM-202302)
详细信息
    作者简介:

    杨 娟(1983- ),女,硕士,副教授,haishi_yj11@126.com

    通讯作者:

    张青松(1977- ),男,博士,教授,nkzqsong@126.com

  • 中图分类号: V242; X932

Passive protection containment of high temperature and impact hazards from thermal runaway in aviation power lithium batteries

  • 摘要: 锂电池热失控造成的热冲击将损坏安装结构,对周围人员和设备安全产生威胁,是限制其航空应用的关键问题。通过自主搭建的锂电池热失控高温冲击实验平台研究发现,单节电池热冲击对电池包顶板的冲击压力高达13.23 kPa,致使其外表面温度高达274 ℃。为了有效包容锂电池热失控造成的高温冲击危害,提出电池包顶板涂敷防火涂层的被动防护方法。通过实验研究表明,环氧树脂基膨胀型防火涂层可通过膨胀有效阻隔锂电池热失控冲击压力影响,通过吸收热量降低并延缓电池包顶板的温度上升。分析锂电池热失控包容性验证实验结果可知,1.0 mm厚的E80S20涂层和E85S15B3涂层分别使电池包顶板最高温度下降52.16%和55.80%,结构最高形变分别降低72.2%和44.4%。研究表明防火涂层被动防护技术能够有效提升电池舱体对热失控高温和冲击危害的包容性,可作为航空动力锂电池系统安全性设计的有效措施。
  • 图  1  热冲击测试平台示意图

    Figure  1.  Schematic diagram of thermal shock testing platform

    图  2  不同SOC电池热失控下铝板背火面温度和所受冲击压力

    Figure  2.  Temperature and impact pressure on the backside of aluminum plates under thermal runaway of different SOC batteries

    图  3  丁烷火焰冲击下涂层背火面的温度变化曲线

    Figure  3.  Temperature change curves of coating backfired surfaces under butane flame impact

    图  4  涂层受热后的膨胀高度与形貌特征

    Figure  4.  Expansion height and morphological characteristics of coatings after heating

    图  5  涂层厚度对铝板背火面最高温度与所受最大冲击压力的影响

    Figure  5.  Influences of coating thicknesses on the maximum temperature and maximum impact pressure on the backside of aluminum plates

    图  6  热失控包容性实验平台示意图

    Figure  6.  Schematic diagram of the thermal shock containment testing platform

    图  7  不同涂层在电池热失控高温冲击下的表面残留物

    Figure  7.  Surface residues of different coatings under thermal runaway and high temperature impact of batteries

    图  8  铝板达到峰值温度瞬间的热像图

    Figure  8.  Thermal images at the moment when aluminum plates reach their peak temperature

    图  9  铝板达到峰值温度时瞬态热分布

    Figure  9.  Transient thermal distribution of aluminum plates at peak temperature

    图  10  铝板外表面的最高温度变化曲线

    Figure  10.  The maximum temperature change curve of the outer surface of the aluminum plates

    图  11  铝板在电池热失控冲击后的形变情况

    Figure  11.  Deformation of aluminum plates after thermal runaway impact of batteries

    表  1  涂料中不同组分的质量分数

    Table  1.   Mass fractions of different components in coatings %

    涂料环氧树脂坡缕石+海泡石有机硅树脂APP+MEL+PER593固化剂碳化硼
    E80S2050.794.7612.7019.0512.700.00
    E85S15B352.952.349.3518.6912.464.21
    下载: 导出CSV

    表  2  不同涂层的锥形量热测试参数

    Table  2.   Cone calorimeter test parameters for different coatings

    样品TTI/sPHRR/(kW·m−2)THR/(MJ·m−2)MRR/%
    E80S2031181.3439.3156.88
    E85S15B329170.5335.6258.32
    下载: 导出CSV

    表  3  不同厚度涂层的包容效果

    Table  3.   Containment effects of coatingswith different thicknesses

    涂层材料 厚度/mm Tmax/℃ CT/% pmax/kPa Cp/%
    E80S20 0.5 144.95 47.1 10.21 22.8
    1.0 106.31 61.2 9.61 27.3
    2.0 100.28 63.4 9.21 30.4
    E85S15B3 0.5 95.08 65.3 10.92 17.6
    1.0 89.32 67.4 10.5 20.5
    2.0 85.49 68.8 10.25 22.6
    下载: 导出CSV
  • [1] ZHAO C, JU S, XUE Y, et al. China’s energy transitions for carbon neutrality: challenges and opportunities [J]. Carbon Neutrality, 2022, 1(1): 7. DOI: 10.1007/s43979-022-00010-y.
    [2] 黄俊, 杨凤田. 新能源电动飞机发展与挑战 [J]. 航空学报, 2016, 37(1): 57–68. DOI: 10.7527/S1000-6893.2015.0274.

    HUANG J, YANG F T. Development and challenges of electric aircraft with new energies [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57–68. DOI: 10.7527/S1000-6893.2015.0274.
    [3] YANG J, BAO X W, YANG Z G. Load Identification for the more electric aircraft distribution system based on intelligent algorithm [J]. Aerospace, 2022, 9: 350. DOI: 10.3390/aerospace9070350.
    [4] 陈农田, 李俊辉, 王志宏, 等. B787-800飞机锂电池起火事故原因及分析 [J]. 电池, 2022, 52(2): 204–207. DOI: 10.19535/j.1001-1579.2022.02.020.

    CHEN N T, LI J H, WANG Z H, et al. Cause and analysis of lithium battery fire accident of B787-800 aircraft [J]. Battery, 2022, 52(2): 204–207. DOI: 10.19535/j.1001-1579.2022.02.020.
    [5] 杨娟, 牛江昊, 张青松, 等. 循环老化对锂离子电池热失控气体爆炸危险性影响实验研究 [J]. 航空学报, 2024, 45(3): 428529. DOI: 10.7527/S1000-6893.2023.28529.

    YANG J, NIU J H, ZHANG Q S, et al. Experimental research on the effect of cyclic aging on the detonation risk of thermal runaway gas explosion in lithium-ion batteries [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 428529. DOI: 10.7527/S1000-6893.2023.28529.
    [6] YANG J, LIU W, ZHAO H, et al. Experimental investigation of lithium-ion batteries thermal runaway propagation consequences under different triggering modes [J]. Aerospace, 2024, 11(6): 438. DOI: 10.3390/aerospace11060438.
    [7] 袁帅, 台枫, 钱新明, 等. 磷酸铁锂电池热失控产物爆炸下限预测方法[J]. 爆炸与冲击, 2024, 44(12): 120000. DOI: 10.11883/bzycj-2023-0452.

    YUAN S, TAI F, QIAN X M, et al. Methods of prediction on the explosion limit of the thermal runaway pro-duction of lithium iron phosphate battery[J]. Explosion and Shock Waves, 2024, 44(12): 120000. DOI: 10.11883/bzycj-2023-0452.
    [8] SHAN T, ZHANG P, WANG Z, et al. Insights into extreme thermal runaway scenarios of lithium-ion batteries fire and explosion: A critical review [J]. Journal of Energy Storage, 2024, 88: 111532. DOI: 10.1016/j.est.2024.111532.
    [9] WANG Z, CHEN S, HE X, et al. A multi-factor evaluation method for the thermal runaway risk of lithium-ion batteries [J]. Journal of Energy Storage, 2022, 45: 103767. DOI: 10.1016/j.est.2021.103767.
    [10] STERLING J, TATTERSALL L, BAMBER N, et al. Composite structure failure analysis post Lithium-Ion battery fire[J]. Engineering Failure Analysis, 2024: 108163. DOI: 10.1016/j.engfailanal.2024.108163.
    [11] RTCA Inc. Environmental Conditions and Test Procedures for Airborne Equipment: RTCA DO-160G [S]. Washington: Radio Technical Commission for Aeronautics, 2010.
    [12] RTCA Inc. Minimum operational performance standards for rechargeable lithium batteries and battery sys-tems: RTCA DO-311A [S]. Washington: Radio Technical Commission for Aeronautics, 2017.
    [13] CAI G, WU J, GUO J, et al. A novel inorganic aluminum phosphate-based flame retardant and thermal insulation coating and performance analysis [J]. Materials, 2023, 16(13): 4498. DOI: 10.3390/ma16134498.
    [14] 吴沛沛, 张依晴, 田爱琴, 等. 膨胀型钢结构防火涂料的研究进展 [J]. 涂料工业, 2024, 54(3): 59–65. DOI: 10.12020/j.issn.0253-4312.2024-015.

    WU P P, ZHANG Y Q, TIAN A Q, et al. Research progress on the intumescent fire retardant coatings for steel structure [J]. Paint & Coatings Industry, 2024, 54(3): 59–65. DOI: 10.12020/j.issn.0253-4312.2024-015.
    [15] CAI G S, WAN Y G, LIU J X, et al. Preparation and performance analysis of methyl-silicone resin-modified epoxy resin-based intumescent flame retardant thermal insulation coating [J]. Journal of Micromechanics and Molecular Physics, 2023, 8(2/3): 61–82. DOI: 10.1142/S2424913023410011.
    [16] CHEN H D, BUSTON J E H, GILL J, et al. An experimental study on thermal runaway characteristics of lithium-ion batteries with high specific energy and prediction of heat release rate [J]. Journal of Power Sources, 2020, 472: 228585. DOI: 10.1016/j.jpowsour.2020.228585.
    [17] KONG D P, WANG G Q, PING P, et al. A coupled conjugate heat transfer and CFD model for the thermal runaway evolution and jet fire of 18650 lithium-ion battery under thermal abuse [J]. eTransportation, 2022, 12: 100157. DOI: 10.1016/j.etran.2022.100157.
    [18] WANG S P, SONG L F, LI C H, et al. Experimental study of gas production and flame behavior induced by the thermal runaway of 280 Ah lithium iron phosphate battery [J]. Journal of Energy Storage, 2023, 74: 109368. DOI: 10.1016/j.est.2023.109368.
    [19] CHEN M Y, DONGXU O Y, LIU J H, et al. Investigation on thermal and fire propagation behaviors of multiple lithium-ion batteries within the package [J]. Applied Thermal Engineering, 2019, 157: 113750. DOI: 10.1016/j.applthermaleng.2019.113750.
    [20] CHEN S C, WANG Z R, YAN W, et al. Investigation of impact pressure during thermal runaway of lithium ion battery in a semi-closed space [J]. Applied Thermal Engineering, 2020, 175: 115429. DOI: 10.1016/j.applthermaleng.2020.115429.
    [21] LI H X, GAO Q, LING J J, et al. Thermal runaway propagation and combustion characteristics of enclosed LiNi0.8Co0.1Mn0.1O2 pouch battery modules in an open environment [J]. Journal of Energy Storage, 2024, 85: 110877. DOI: 10.1016/j.est.2024.110877.
    [22] ZHANG Y H, CHEN S Q, SHAHIN M E, et al. Multi-objective optimization of lithium-ion battery pack casing for electric vehicles: key role of materials design and their influence [J]. International Journal of Energy Research, 2020, 44(12): 9414–9437. DOI: 10.1002/er.4965.
    [23] European Committee for Standardization. Eurocode 9: Design of Aluminum Structures, Part 1−2: General Rules−Structural Fire Design: BS EN 1999−1−2[S]. London: European Committee for Standardization, 2007.
    [24] 罗星娜, 张青松, 戚瀚鹏, 等. 基于计算流体动力学的锂离子电池热失控多米诺效应研究 [J]. 科学技术与工程, 2014, 14(33): 327–332. DOI: 10.3969/j.issn.1671-1815.2014.33.062.

    LUO X N, ZHANG Q S, QI H P, et al. Lithium-ion battery thermal runaway domino effect analysis based on the CFD [J]. Science Technology and Engineering, 2014, 14(33): 327–332. DOI: 10.3969/j.issn.1671-1815.2014.33.062.
    [25] YANG X K, WAN Y G, YANG N, et al. The effect of different diluents and curing agents on the performance of epoxy resin-based intumescent flame-retardant coatings [J]. Materials, 2024, 17(2): 348. DOI: 10.3390/ma17020348.
    [26] 全国建筑防火标准化技术委员会. 饰面型防火涂料: GB/T 12441—2018[S]. 北京: 中国标准出版社, 2018.

    National Technical Committee on Fire Protection In Building. Fire-resistant coatings for decorative finishes: GB/T 12441—2018 [S]. Beijing: Standards Press of China, 2018.
    [27] International Organization for Standardization. Reaction-to-fire tests: heat release, smoke production and mass loss rate: ISO 5660-1: 2015[S]. Geneva: International Organization for Standardization, 2015.
    [28] 吕仲菲, 唐宇建, 王俊杰, 等. 纳米填料对多功能防火涂料性能的影响 [J]. 涂料工业, 2024, 54(3): 21–25. DOI: 10.12020/j.issn.0253-4312.2023-347.

    LÜ Z F, TANG Y J, WANG J J, et al. The effect of nanometer-structured fillers on properties of multifunctional fire retardant coatings [J]. Paint & Coatings Industry, 2024, 54(3): 21–25. DOI: 10.12020/j.issn.0253-4312.2023-347.
    [29] LI J Y, GAO P, TONG B, et al. Revealing the mechanism of pack ceiling failure induced by thermal runaway in NCM batteries: a coupled multiphase fluid-structure interaction model for electric vehicles [J]. eTransportation, 2024, 20: 100335. DOI: 10.1016/j.etran.2024.100335.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  46
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-16
  • 修回日期:  2024-09-22
  • 网络出版日期:  2024-09-23

目录

    /

    返回文章
    返回