基于战斗部侵彻动爆一体化效应的遮弹层设计

吴昊 岑国华 程月华 张瑜

吴昊, 岑国华, 程月华, 张瑜. 基于战斗部侵彻动爆一体化效应的遮弹层设计[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0244
引用本文: 吴昊, 岑国华, 程月华, 张瑜. 基于战斗部侵彻动爆一体化效应的遮弹层设计[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0244
WU Hao, CEN Guohua, CHENG Yuehua, ZHANG Yu. Design of shield based on integrated effect of penetration and moving charge explosion of warheads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0244
Citation: WU Hao, CEN Guohua, CHENG Yuehua, ZHANG Yu. Design of shield based on integrated effect of penetration and moving charge explosion of warheads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0244

基于战斗部侵彻动爆一体化效应的遮弹层设计

doi: 10.11883/bzycj-2024-0244
基金项目: 国家自然科学基金(52308522);工程材料与结构冲击振动四川省重点实验室开放基金(23kfgk01)
详细信息
    作者简介:

    吴 昊(1981- ),男,博士,教授,wuhaocivil@tongji.edu.cn

    通讯作者:

    程月华(1994- ),女,博士,yhcheng@tongji.edu.cn

  • 中图分类号: O385

Design of shield based on integrated effect of penetration and moving charge explosion of warheads

  • 摘要: 准确评估钻地武器战斗部侵彻和装药运动爆炸(侵彻动爆)的连续作用是对防护结构遮弹层进行可靠设计的前提。首先,基于装药体积填充和侵彻爆炸分步耦合技术,提出了三阶段弹体侵彻动爆一体化有限元分析方法。通过与已有的装药运动爆炸试验以及普通混凝土和超高性能混凝土靶体的侵彻静爆试验结果进行对比,充分验证了提出方法对侵彻爆炸过程中爆炸波传播、靶体内应力峰值和开裂行为及其损伤演化描述的准确性。然后,基于105 mm口径缩比弹体打击NSC靶体工况,对比了提出方法和传统侵彻静爆法预测靶体损伤破坏的差异,分析了侵彻爆炸应力场的叠加效应以及弹壳约束和断裂破片的影响,并基于弹载装药在不同时刻起爆下靶体的破坏特征,确定了战斗部最不利起爆时刻。最后,针对SDB、WDU-43/B和BLU-109/B 3种原型战斗部打击工况开展数值仿真,其侵彻动爆作用下NSC和UHPC遮弹层破坏深度分别为1.33、2.70、2.35 m和0.79、1.76、1.70 m,进一步给出了相应的遮弹层临界震塌和临界贯穿厚度。结果表明,采用侵彻动爆一体化方法计算得到的破坏深度、临界震塌厚度和临界贯穿厚度较传统侵彻静爆法计算结果增大约5%~30%。
  • 图  1  三阶段弹体侵彻动爆一体化有限元分析方法

    Figure  1.  Three-stage finite element analysis method of integrated projectile penetration and moving charge explosion

    图  2  装药运动爆炸试验布置[16]与数值模拟

    Figure  2.  Moving charge explosion test setup[16] and numerical simulations

    图  3  空中入射冲击波峰值的试验[16]与数值模拟结果对比

    Figure  3.  Comparisons of test[16] and simulated peak incident shock wave

    图  4  NSC靶体侵彻静爆试验[3]及有限元模型

    Figure  4.  Penetration and static charge explosion test[3] and finite element models of NSC target

    图  5  NSC靶体侵彻静爆试验[3]与数值模拟损伤对比

    Figure  5.  Comparisons of test[3] and simulated damage of NSC target under penetration and static charge explosion

    图  6  测点位置、试验照片[4]和有限元模型

    Figure  6.  Positions of measuring points, test photo[4] and finite element model

    图  7  侵彻和爆炸阶段UHPC靶体纵剖面与迎弹面的损伤云图

    Figure  7.  Damage nephograms of UHPC target longitudinal profile and impact surface during penetration and static charge explosion stage

    图  8  UHPC靶体侵彻静爆试验[4]和数值模拟结果的对比

    Figure  8.  Comparisons of test[4] and simulated results of UHPC target under penetration and static charge explosion

    图  9  3种工况下靶体最终损伤云图

    Figure  9.  Final damage contours of targets for three scenarios

    图  10  测点位置示意图及应力时程

    Figure  10.  Schematic diagram of measuring points and stress-time histories

    图  11  弹壳断裂及典型破片速度时程

    Figure  11.  Fracture of projectile casing and typical velocity-time history of fragment

    图  12  不同起爆时刻及靶体应力时程

    Figure  12.  Detonation time instants and stress-time histories of targets

    图  13  不同起爆时刻工况中靶体的最终损伤云图

    Figure  13.  Final damage contours of targets corresponding to different detonation time instants

    图  14  3种原型战斗部几何尺寸(单位:mm)

    Figure  14.  Geometric dimensions of three prototypical warheads (unit: mm)

    图  15  侵彻动爆过程UHPC靶体损伤云图

    Figure  15.  Damage contours of UHPC target under penetration and moving charge explosion

    图  16  3种原型战斗部打击NSC遮弹层最终损伤云图

    Figure  16.  Final damage contours of NSC shields against three prototypical warheads

    图  17  3种原型战斗部打击UHPC遮弹层最终损伤云图

    Figure  17.  Final damage contours of UHPC shields against three prototypical warheads

    图  18  弹体侵彻爆炸作用下遮弹层典型破坏模式

    Figure  18.  Typical failure patterns of shield under combined effect of penetration and explosion

    表  1  炸药材料模型和状态方程参数

    Table  1.   Parameters for material model and equation of state of explosives

    炸药类型密度/(kg·m–3)爆速/(m·s–1)爆压/GPaAJWL/GPaBJWL/GPaR1R2ω
    Pentolite[18]1 7007 530265419.374.501.10.35
    TNT[18]1 6306 930213743.754.150.90.35
    HMX[19]1 8919 110427787.074.201.00.30
    PBXN-109[20]1 6607 600221 34132.706.002.00.20
    下载: 导出CSV

    表  2  NSC的RHT模型和状态方程参数[21]

    Table  2.   Parameters for RHT material model and equation of state of NSC[21]

    σc/MPa G/GPa σt* σs* $ g_{\text{c}}^{\text{*}} $ $ g_{\text{t}}^{\text{*}} $ $\xi $ A
    3216.5460.10.180.530.70.51.6
    nQ0BAfnfD1D2$ \varepsilon _{\text{p}}^{\text{m}} $
    0.610.680 50.010 51.60.610.041.00.01
    ρ0/(kg·m−3)α0pE/MPapC/MPaNA1/GPaA2/GPaA3/GPa
    2 3001.191 221.36 000335.2739.589.04
    B0B1T1/GPaT2/GPa$ \dot \varepsilon _{\text{0}}^{\text{c}} $/s−1$ \dot \varepsilon _{\text{0}}^{\text{t}} $/s−1βcβt
    1.221.2235.2703×10−53×10−60.0340.038
    下载: 导出CSV

    表  3  NSC靶体试验[3]与数值模拟破坏深度和开坑直径对比

    Table  3.   Comparisons of test[3] and simulated destructive depths and cracking diameters of NSC target

    试验 破坏深度 开坑直径
    试验/mm 模拟/mm 相对误差/% 试验/mm 模拟/mm 相对误差/%
    侵彻阶段 515 501 −2.72 1 176 1 020 −13.27
    静爆阶段 680 650 −4.41 1 671 1 444 −13.58
    下载: 导出CSV

    表  4  UHPC的RHT模型和状态方程参数[21]

    Table  4.   Parameters for RHT material model and equation of state of UHPC[21]

    σc/MPa G/GPa σt* σs* $ g_{\text{c}}^{\text{*}} $ $ g_{\text{t}}^{\text{*}} $ $\xi $ A
    123.520.90.070 70.2670.530.70.671.6
    nQ0BAfnfD1D2$ \varepsilon _{\text{p}}^{\text{m}} $
    0.610.6810.010 51.750.520.041.00.08
    ρ0/(kg·m−3)α0pE/MPapC/MPaNA1/GPaA2/GPaA3/GPa
    2 5001.191 246.66 00044429.5811.28
    B0B1T1/GPaT2/GPa$ \dot \varepsilon _{\text{0}}^{\text{c}} $/s−1$ \dot \varepsilon _{\text{0}}^{\text{t}} $/s−1βcβt
    1.221.224403×10−53×10−60.012 50.014 3
    下载: 导出CSV

    表  5  30CrMnSiNi2MoVE钢的Johnson-Cook模型参数[22]

    Table  5.   Johnson-Cook model parameters of 30CrMnSiNi2MoVE steel[22]

    ρ/(kg·m−3) G/GPa A0/MPa B0/MPa N0 C M Tm/K Tr/K cV/(J·kg−1·K−1) $ {\dot \varepsilon _0} $/s−1
    7 800 81 1 300 2 483 0.474 0.009 1.07 1 793 289 477 1×10−4
    ε0 D0 D3 D4 D5 C0/(m·s−1) S1 S2 S3 γ0 α
    0.692 1.581 −3.053 −0.042 2.98 4 569 1.49 0 0 2.17 0.46
    下载: 导出CSV

    表  6  3种原型战斗部参数

    Table  6.   Parameters of three prototypical warheads

    战斗部 直径/mm 总质量/kg 长度/mm 弹壳壁厚/mm 头部曲径比 装药类型 装药质量/kg 等效TNT质量/kg
    SDB 152 113 1 800 10.8 3 HMX 15.3 23
    WDU-43/B 234 454 2 400 41.5 9 HMX 66.7 100
    BLU-109/B 368 874 2 510 25.4 3 PBXN-109 238 324
    下载: 导出CSV

    表  7  3种原型战斗部打击NSC和UHPC遮弹层计算结果

    Table  7.   Calculation results of NSC and UHPC shields against three prototypical warheads

    战斗部遮弹层类型侵彻爆炸破坏深度/m相对差值/%临界震塌厚度/m临界贯穿厚度/m
    侵彻静爆法[3, 26]侵彻动爆法系数[3, 26]侵彻静爆法[3, 26]侵彻动爆法系数[3, 26]侵彻静爆法[3, 26]侵彻动爆法
    SDBNSC1.031.3329.133.503.604.661.361.401.81
    UHPC0.740.796.762.301.701.821.761.301.39
    WDU-43/BNSC2.452.7010.202.576.306.941.393.403.75
    UHPC1.611.769.502.363.804.161.582.552.79
    BLU-109/BNSC2.182.357.713.818.308.951.743.804.09
    UHPC1.621.705.063.095.005.261.602.602.72
    下载: 导出CSV
  • [1] FAN Y, CHEN L, YU R Q, et al. Experimental study of damage to ultra-high performance concrete slabs subjected to partially embedded cylindrical explosive charges [J]. International Journal of Impact Engineering, 2022, 168: 104298. DOI: 10.1016/j.ijimpeng.2022.104298.
    [2] LAI J Z, GUO X J, ZHU Y Y. Repeated penetration and different depth explosion of ultra-high performance concrete [J]. International Journal of Impact Engineering, 2015, 84: 1–12. DOI: 10.1016/j.ijimpeng.2015.05.006.
    [3] 程月华, 周飞, 吴昊. 抗战斗部侵彻爆炸作用的混凝土遮弹层设计 [J]. 爆炸与冲击, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.

    CHENG Y H, ZHOU F, WU H. Design of concrete shield against the combination of penetration and explosion of warheads [J]. Explosion and Shock Waves, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.
    [4] YANG Y Z, FANG Q, KONG X Z. Failure mode and stress wave propagation in concrete target subjected to a projectile penetration followed by charge explosion: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2023, 177: 104595. DOI: 10.1016/j.ijimpeng.2023.104595.
    [5] 赖建中, 尹雪祥, 李宏基, 等. 基于功能梯度原理的超高性能混凝土抗侵彻爆炸性能 [J]. 硅酸盐学报, 2020, 48(8): 1188–1200. DOI: 10.14062/j.issn.0454-5648.20200231.

    LAI J Z, YIN X X, LI H J, et al. Anti-penetration and explosion performance of ultra-high performance concrete based on the principle of functional gradient [J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1188–1200. DOI: 10.14062/j.issn.0454-5648.20200231.
    [6] CHENG Y H, ZHOU F, WU H, et al. Resistance of composite target against combined effects of large caliber projectile penetration and successive charge explosion [J]. International Journal of Impact Engineering, 2022, 168: 104288. DOI: 10.1016/j.ijimpeng.2022.104288.
    [7] 李述涛, 魏万里, 陈叶青, 等. 基于体积填充法的弹体侵爆一体毁伤效应研究 [J]. 振动与冲击, 2023, 42(12): 194–204. DOI: 10.13465/j.cnki.jvs.2023.012.022.

    LI S T, WEI W L, CHEN Y Q, et al. A study on damage effect of projectile penetration and explosion integration based on a volume filling method [J]. Journal of Vibration and Shock, 2023, 42(12): 194–204. DOI: 10.13465/j.cnki.jvs.2023.012.022.
    [8] WEI W L, CHEN Y Q, WANG Z Q, et al. Research on damage effect of the concrete target under the penetration and explosion integration [J]. Structures, 2023, 47: 1511–1523. DOI: 10.1016/j.istruc.2022.11.083.
    [9] WEI W L, CHEN Y Q, WANG Z Q, et al. Research on damage effect of penetration and explosion integration based on volume filling method [J]. International Journal of Impact Engineering, 2023, 177: 104591. DOI: 10.1016/j.ijimpeng.2023.104591.
    [10] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [11] 孙传杰, 卢永刚, 张方举, 等. 新型头形弹体对混凝土的侵彻 [J]. 爆炸与冲击, 2010, 30(3): 269–275. DOI: 10.11883/1001-1455(2010)03-0269-07.

    SUN C J, LU Y G, ZHANG F J, et al. Penetration of cylindrical-nose-tip projectiles into concrete targets [J]. Explosion and Shock Waves, 2010, 30(3): 269–275. DOI: 10.11883/1001-1455(2010)03-0269-07.
    [12] 王可慧, 周刚, 李明, 等. 弹体高速侵彻钢筋混凝土靶试验研究 [J]. 爆炸与冲击, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.

    WANG K H, ZHOU G, LI M, et al. Experimental research on the mechanism of a high-velocity projectile penetrating into a reinforced concrete target [J]. Explosion and Shock Waves, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.
    [13] GAO C, KONG X Z, FANG Q. Experimental and numerical investigation on the attenuation of blast waves in concrete induced by cylindrical charge explosion [J]. International Journal of Impact Engineering, 2023, 174: 104491. DOI: 10.1016/j.ijimpeng.2023.104491.
    [14] 高矗, 孔祥振, 方秦, 等. 混凝土中爆炸应力波衰减规律的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.

    GAO C, KONG X Z, FANG Q, et al. Numerical study on attenuation of stress wave in concrete subjected to explosion [J]. Explosion and Shock Waves, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.
    [15] 王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.

    WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
    [16] ARMENDT B F, SPERRAZZA J. Air blast measurements around moving explosive charges, Part Ⅲ: AD0114950 [R]. Aberdeen: Army Ballistics Research Laboratory, 1956.
    [17] MARRS F, HEIGES M. Soil modeling for mine blast simulation [C]//13th International LS-DYNA Users Conference. Dearborn: Schwer Engineering and Consulting services, 2014.
    [18] DOBRATZ B M. LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants: UCRL-52997 [R]. Livermore: Lawrence Livermore National Lab. , 1981.
    [19] LEE L, FINGER M, COLLINS W. JWL Equation of state coefficients for high explosive: UCID-16189 [R]. Livermore: Lawrence Livermore National Lab. , 1973.
    [20] LU J P, LOCHERT I J, KENNEDY D L, et al. Simulation of sympathetic reaction tests for PBXN-109 [C]//Proceedings of 13th International Symposium on Detonation. New York: ISB, 2006: 1338–1349.
    [21] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500, numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on Interaction of the Effects of Munitions with Structures. Berlin: ISIEMS, 1999: 315–322.
    [22] CHENG Y H, WU H, JIANG P F, et al. Ballistic resistance of high-strength armor steel against ogive-nosed projectile impact [J]. Thin-Walled Structures, 2023, 183: 110350. DOI: 10.1016/j.tws.2022.110350.
    [23] 刘彦, 段卓平, 王新生, 等. 不同厚度壳体装药在混凝土中爆炸的实验研究 [J]. 北京理工大学学报, 2010, 30(7): 771–773,848. DOI: 10.15918/j.tbit1001-0645.2010.07.008.

    LIU Y, DUAN Z P, WANG X S, et al. Experiments on explosion of explosives with different thickness shells in concrete [J]. Transactions of Beijing Institute of Technology, 2010, 30(7): 771–773,848. DOI: 10.15918/j.tbit1001-0645.2010.07.008.
    [24] 陈龙明, 李志斌, 陈荣. 装药动爆冲击波特性研究 [J]. 爆炸与冲击, 2020, 40(1): 013201. DOI: 10.11883/bzycj-2019-0029.

    CHEN L M, LI Z B, CHEN R. Characteristics of dynamic explosive shock wave of moving charge [J]. Explosion and Shock Waves, 2020, 40(1): 013201. DOI: 10.11883/bzycj-2019-0029.
    [25] 欧育湘. 炸药学 [M]. 北京: 北京理工大学出版社, 2014: 213-230.

    OU Y X. Explosives [M]. Beijing: Beijing Institute of Technology Press, 2014: 213-230.
    [26] 程月华, 吴昊, 岑国华, 等. 侵彻爆炸联合作用下超高性能混凝土遮弹层设计 [J]. 爆炸与冲击, 2025, 45(1): 013301. DOI: 10.11883/bzycj-2024-0061.

    CHENG Y H, WU H, CEN G H, et al. Design of ultra-high performance concrete shield against combined penetration and explosion of warheads [J]. Explosion and Shock Waves, 2025, 45(1): 013301. DOI: 10.11883/bzycj-2024-0061.
    [27] 吴昊, 张瑜, 程月华, 等. 典型战斗部侵彻爆炸下块石混凝土的遮弹层设计 [J/OL]. 爆炸与冲击, 2024[2024-07-08] https://www.bzycj.cn/article/doi/ 10.11883/bzycj-2024-0136. DOI: 10.11883/bzycj-2024-0136.

    WU H, ZHANG Y, CHENG Y H, et al. Design of rock-rubble concrete shield against the combination of penetration and explosion of warheads [J/OL]. Explosion and Shock Waves, 2024[2024-07-08] https://www.bzycj.cn/article/doi/ 10.11883/bzycj-2024-0136. DOI: 10.11883/bzycj-2024-0136.
  • 加载中
图(18) / 表(7)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  16
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-08
  • 修回日期:  2024-10-28
  • 网络出版日期:  2024-11-14

目录

    /

    返回文章
    返回