马蹄形隧道拱脚周边孔爆破围岩的损伤特征

徐帮树 杜念伟 王帅帅 周韧 高轩 张万志

徐帮树, 杜念伟, 王帅帅, 周韧, 高轩, 张万志. 马蹄形隧道拱脚周边孔爆破围岩的损伤特征[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0254
引用本文: 徐帮树, 杜念伟, 王帅帅, 周韧, 高轩, 张万志. 马蹄形隧道拱脚周边孔爆破围岩的损伤特征[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0254
XU Bangshu, DU Nianwei, WANG Shuaishuai, ZHOU Ren, GAO Xuan, ZHANG Wanzhi. Blasting damage characteristics of surrounding rock around the arch foot of horseshoe tunnel[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0254
Citation: XU Bangshu, DU Nianwei, WANG Shuaishuai, ZHOU Ren, GAO Xuan, ZHANG Wanzhi. Blasting damage characteristics of surrounding rock around the arch foot of horseshoe tunnel[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0254

马蹄形隧道拱脚周边孔爆破围岩的损伤特征

doi: 10.11883/bzycj-2024-0254
基金项目: 国家自然科学基金(50909056,52379102);山东省自然科学基金(ZR2014EEM014)
详细信息
    作者简介:

    徐帮树(1974- ),男,博士,副教授,xubangshu@sdu.edu.cn

    通讯作者:

    杜念伟(2000- ),男,硕士研究生,1070735015@qq.com

  • 中图分类号: U455.41

Blasting damage characteristics of surrounding rock around the arch foot of horseshoe tunnel

  • 摘要: 为解决隧道拱脚周边孔爆破难成形以致超挖和掌子面底部欠挖问题,研究了马蹄形隧道拱脚周边孔爆破围岩的损伤特征。依托方山隧道,建立了拱脚周边孔的三维数值模型,模拟了拱脚处围岩的损伤情况,分析了爆破效果与自由面形状、装药量以及空孔偏转角的映射关系,并通过现场试验进行了验证。结果表明:自由面形状显著影响围岩的损伤范围和炸药的能量利用率,相较于平直自由面,凹形自由面的损伤范围小,岩石的夹制作用更大,炸药爆破难以有效破碎围岩,能量利用率仅为78%;爆破效果随着装药量的增加呈先增大后减小的趋势,当拱脚周边孔的线装药密度为0.624 kg/m时,爆破效果最佳;此外,通过布设空孔和调整空孔偏转角,可以改善拱脚周边孔的爆破效果。采用优化后的爆破参数,拱脚处最大线性超挖量降低了53.1%,隧道轮廓成型平整。
  • 图  1  原爆破方案下隧道爆后围岩特征分布

    Figure  1.  Tunnel surrounding rock characteristics under original blasting scheme

    图  2  爆破的数值模型

    Figure  2.  Numerical models of blasting

    图  3  切片截面

    Figure  3.  Sliced cross-section

    图  4  凹形自由面条件下不同截面损伤云图

    Figure  4.  Damage nephogram of different sections under concave free surface condition

    图  5  平直自由面条件下不同截面损伤云图

    Figure  5.  Damage nephogram of different sections under flat free surface condition

    图  6  不同自由面条件下的损伤面积

    Figure  6.  Damage area under different free face conditions

    图  7  不同装药量条件下截面A的损伤云图

    Figure  7.  Damage nephogram of cross-section A under different charge conditions

    图  8  不同装药量条件下截面B的损伤云图

    Figure  8.  Damage nephogram of cross-section B under different charge conditions

    图  9  不同装药量条件下截面C的损伤云图

    Figure  9.  Damage nephogram of cross-section C under different charge conditions

    图  10  不同装药量条件下的损伤面积

    Figure  10.  Damage area under different charge conditions

    图  11  不同空孔偏转角条件下截面A的损伤云图

    Figure  11.  Damage nephogram of section A under various hollow hole deflection angle conditions

    图  12  不同空孔偏转角条件下截面B的损伤云图

    Figure  12.  Damage nephogram of section B under various hollow hole deflection angle conditions

    图  13  不同空孔偏转角条件下截面C的损伤云图

    Figure  13.  Damage nephogram of section C under various hollow hole deflection angle conditions

    图  14  不同空孔偏转角条件下的损伤面积

    Figure  14.  Damage area under different hole deflection angle conditions

    图  15  Ⅳ级围岩隧道标准断面(单位:m)

    Figure  15.  The standard cross section of tunnel in class Ⅳ rock mass (unit: m)

    图  16  炮孔布置

    Figure  16.  Layout of blasthole

    图  17  爆后围岩情况

    Figure  17.  Surrounding rock condition after blasting

    图  18  爆后断面的超欠挖(单位:cm)

    Figure  18.  Over-excavation of the blasting face (unit: cm)

    表  1  隧道的爆破参数

    Table  1.   Tunnel blasting parameters

    炮孔分类 段别/段 孔距/m 孔数 单孔装药量/kg
    周边孔 11 0.6 30 0.60
    拱脚周边孔 13 0.6 2 1.65
    下载: 导出CSV

    表  2  岩石的材料参数

    Table  2.   Material parameters of rock

    密度/(kg·m−3) 初始裂隙度 压碎压力/MPa 压实压力/GPa 弹性剪切模量/GPa 静态抗压强度/GPa 拉压强度比 剪压强度比
    2600 0 125 6 21.9 167.8 0.04 0.21
    压缩屈服面
    参数
    拉伸屈服面
    参数
    参考压缩应
    变率/s−1
    参考拉伸应
    变率/s−1
    失效压缩应
    变率/s−1
    失效拉伸应
    变率/s−1
    压缩应变
    指数
    拉伸应变
    指数
    0.53 0.7 3×10−5 3×10−6 3×1025 3×1025 0.026 0.007
    下载: 导出CSV

    表  3  炸药的材料参数

    Table  3.   Material parameters of explosive

    ρ/(kg·m−3)D/(m·s−1)A/GPaB/GPaR1R2ωE0/(MJ·m−3)
    120030003733.744.150.90.154.192
    下载: 导出CSV

    表  4  空气的材料参数

    Table  4.   Material parameters of air

    C0 C1 C2 C3 C4 C5 C6 ρ/(kg·m−3) E0/(MJ·m−3)
    0 0 0 0 0.4 0.4 0 1.29 2500
    下载: 导出CSV

    表  5  工况的设计参数

    Table  5.   Design parameters of working conditions

    工况 孔深/m 装药量/kg 自由面形式 γ/(°)
    1 2.4 1.5 平直自由面
    2 2.4 1.5 凹形自由面
    3 2.4 0.9 凹形自由面
    4 2.4 1.2 凹形自由面
    5 2.4 1.8 凹形自由面
    6 2.4 1.5 凹形自由面 0
    7 2.4 1.5 凹形自由面 15
    8 2.4 1.5 凹形自由面 30
    9 2.4 1.5 凹形自由面 45
    下载: 导出CSV
  • [1] 潘强, 张继春, 石洪超, 等. 单孔不耦合装药爆破的岩体损伤分布特征研究 [J]. 振动与冲击, 2019, 38(18): 264–269. DOI: 10.13465/j.cnki.jvs.2019.18.037.

    PAN Q, ZHANG J C, SHI H C, et al. Distribution characteristics of the rock mass damage caused by single-hole decoupling charge blasting [J]. Journal of Vibration and Shock, 2019, 38(18): 264–269. DOI: 10.13465/j.cnki.jvs.2019.18.037.
    [2] 王新宇, 邵珠山. 马蹄形隧道初期支护内力反演分析的理论研究 [J]. 现代隧道技术, 2014, 51(6): 83–88. DOI: 10.13807/j.cnki.mtt.2014.06.014.

    WANG X Y, SHAO Z S. Theoretical research on the inverse analysis of the internal force of the primary support in a horseshoe tunnel [J]. Modern Tunnelling Technology, 2014, 51(6): 83–88. DOI: 10.13807/j.cnki.mtt.2014.06.014.
    [3] 徐帮树, 张万志, 石伟航, 等. 节理裂隙层状岩体隧道掘进爆破参数试验研究 [J]. 中国矿业大学学报, 2019, 48(6): 1248–1255. DOI: 10.13247/j.cnki.jcumt.001080.

    XU B S, ZHANG W Z, SHI W H, et al. Experimental study of parameters of tunneling blasting in jointed layered rock mass [J]. Journal of China University of Mining & Technology, 2019, 48(6): 1248–1255. DOI: 10.13247/j.cnki.jcumt.001080.
    [4] 李启月, 魏新傲, 郑静, 等. Ⅳ级围岩大断面隧道全断面开挖轮廓控制研究与应用 [J]. 公路交通科技, 2020, 37(3): 88–95. DOI: 10.3969/j.issn.1002-0268.2020.03.011.

    LI Q Y, WEI X A, ZHENG J, et al. Study and application of profile control for full section excavation of large section tunnel in grade Ⅳ surrounding rock [J]. Journal of Highway and Transportation Research and Development, 2020, 37(3): 88–95. DOI: 10.3969/j.issn.1002-0268.2020.03.011.
    [5] 龚斌, 唐春安. 马蹄形隧道围岩非线性变形破坏的数值模拟研究 [J]. 水利与建筑工程学报, 2019, 17(3): 28–32,54. DOI: 10.3969/j.issn.1672-1144.2019.03.004.

    GONG B, TANG C A. Numerical simulation of the nonlinear deformation and failure of surrounding rocks around horseshoe tunnel [J]. Journal of Water Resources and Architectural Engineering, 2019, 17(3): 28–32,54. DOI: 10.3969/j.issn.1672-1144.2019.03.004.
    [6] 马乐, 张万志, 刘成龙, 等. Ⅲ级硬岩隧道全断面光面爆破试验研究 [J]. 爆破, 2023, 40(3): 46–51, 67. DOI: 10.3963/j.issn.1001-487X.2023.03.007.

    MA L, ZHANG W Z, LIU C L, et al. Experimental study on full face smooth blasting of tunnel in class Ⅲ hard rock [J]. Blasting, 2023, 40(3): 46–51, 67. DOI: 10.3963/j.issn.1001-487X.2023.03.007.
    [7] 杨赛群, 李洪伟, 吴立辉, 等. 影响光面爆破效果和空孔处能量分布的试验研究 [J]. 工程爆破, 2022, 28(6): 58–65. DOI: 10.19931/j.EB.20210311.

    YANG S Q, LI H W, WU L H, et al. Experimental study on effect of smooth blasting and energy distribution at empty hole [J]. Engineering Blasting, 2022, 28(6): 58–65. DOI: 10.19931/j.EB.20210311.
    [8] 赵晓明, 杨玉民, 蒋楠, 等. 深埋引水隧洞光面爆破周边孔装药结构优化试验研究 [J]. 高压物理学报, 2022, 36(4): 045301. DOI: 10.11858/gywlxb.20220503.

    ZHAO X M, YANG Y M, JIANG N, et al. Optimization of charging structure of surrounding holes in smooth blasting of deep diversion tunnel [J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 045301. DOI: 10.11858/gywlxb.20220503.
    [9] 周磊, 朱哲明, 刘邦, 等. 马蹄形隧道拱脚裂纹对围岩稳定性的影响 [J]. 岩土工程学报, 2020, 42(1): 91–99. DOI: 10.11779/CJGE202001010.

    ZHOU L, ZHU Z M, LIU B, et al. Influence of arch foot crack on stability of surrounding rock mass in horseshoe-shaped tunnels [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 91–99. DOI: 10.11779/CJGE202001010.
    [10] CHABOCHE J L. Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage [J]. International Journal of Damage Mechanics, 1993, 2(4): 311–329. DOI: 10.1177/105678959300200401.
    [11] 李盟, 朱哲明, 肖定军, 等. 煤矿岩巷爆破掘进过程中周边眼对裂纹扩展止裂机理 [J]. 煤炭学报, 2017, 42(7): 1691–1699. DOI: 10.13225/j.cnki.jccs.2016.1226.

    LI M, ZHU Z M, XIAO D J, et al. Mechanism of crack arrest by peripheral holes during mine rock roadway excavation under blasting [J]. Journal of China Coal Society, 2017, 42(7): 1691–1699. DOI: 10.13225/j.cnki.jccs.2016.1226.
    [12] 汪海波, 宗琦, 赵要才. 立井大直径中空孔直眼掏槽爆炸应力场数值模拟分析与应用 [J]. 岩石力学与工程学报, 2015, 34(S1): 3223–3229. DOI: 10.13722/j.cnki.jrme.2014.0296.

    WANG H B, ZONG Q, ZHAO Y C. Numerical analysis and application of large diameter cavity parallel cut blasting stress field in vertical shaft [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3223–3229. DOI: 10.13722/j.cnki.jrme.2014.0296.
    [13] 杨仁树, 陈程, 王煦, 等. 不同直径空孔对爆生裂纹扩展行为影响规律的实验研究 [J]. 煤炭学报, 2017, 42(10): 2498–2503. DOI: 10.13225/j.cnki.jccs.2017.0240.

    YANG R S, CHEN C, WANG X, et al. Experimental investigation on the influence of different diameter empty holes on the crack growth behavior of blasting [J]. Journal of China Coal Society, 2017, 42(10): 2498–2503. DOI: 10.13225/j.cnki.jccs.2017.0240.
    [14] CHO S H, NAKAMURA Y, MOHANTY B, et al. Numerical study of fracture plane control in laboratory-scale blasting [J]. Engineering Fracture Mechanics, 2008, 75(13): 3966–3984. DOI: 10.1016/j.engfracmech.2008.02.007.
    [15] 蒲传金, 杨鑫, 肖定军, 等. 爆炸载荷下双孔裂纹扩展的数值模拟研究 [J]. 振动与冲击, 2022, 41(15): 300–311. DOI: 10.13465/j.cnki.jvs.2022.15.037.

    PU C J, YANG X, XIAO D J, et al. Numerical simulation of double-hole crack propagation under explosion load [J]. Journal of Vibration and Shock, 2022, 41(15): 300–311. DOI: 10.13465/j.cnki.jvs.2022.15.037.
    [16] 牛永朕, 苏霈洋, 李智深, 等. 空孔对裂纹扩展行为影响规律研究 [J]. 煤炭技术, 2023, 42(9): 134–139. DOI: 10.13301/j.cnki.ct.2023.09.027.

    NIU Y Z, SU P Y, LI Z S, et al. Research on influence law of hollow holes on crack propagation behavior [J]. Coal Technology, 2023, 42(9): 134–139. DOI: 10.13301/j.cnki.ct.2023.09.027.
    [17] 戴俊. 岩石动力学特性与爆破理论 [M]. 2版. 北京: 冶金工业出版社, 2013.

    DAI J. Dynamic behaviors and blasting theory of rock [M]. 2nd ed. Beijing: Metallurgical Industry Press, 2013.
    [18] 朱红兵, 卢文波, 吴亮. 空气间隔装药爆破机理研究 [J]. 岩土力学, 2007, 28(5): 986–990. DOI: 10.16285/j.rsm.2007.05.025.

    ZHU H B, LU W B, WU L. Research on mechanism of air-decking technique in bench blasting [J]. Rock and Soil Mechanics, 2007, 28(5): 986–990. DOI: 10.16285/j.rsm.2007.05.025.
    [19] 戴俊. 柱状装药爆破的岩石压碎圈与裂隙圈计算 [J]. 辽宁工程技术大学学报(自然科学版), 2001, 20(2): 144–147. DOI: 10.3969/j.issn.1008-0562.2001.02.005.

    DAI J. Calculation of radii of the broken and cracked areas in rock by a long charge explosion [J]. Journal of Liaoning Technical University (Natural Science), 2001, 20(2): 144–147. DOI: 10.3969/j.issn.1008-0562.2001.02.005.
    [20] 张万志, 徐帮树, 葛颜慧, 等. 隧道拱部穿越页岩爆破开挖方法及参数试验研究 [J]. 振动与冲击, 2022, 41(15): 90–98. DOI: 10.13465/j.cnki.jvs.2022.15.012.

    ZHANG W Z, XU B S, GE Y H, et al. Blasting excavation method and parametric tests for tunnel arch crossing shale [J]. Journal of Vibration and Shock, 2022, 41(15): 90–98. DOI: 10.13465/j.cnki.jvs.2022.15.012.
    [21] 余绍山, 王薇, 李姚伟奇. 周边眼偏位空孔爆破设计优化研究与应用 [J]. 铁道科学与工程学报, 2024, 21(4): 1509–1520. DOI: 10.19713/j.cnki.43-1423/u.T20230931.

    YU S S, WANG W, LI Y W Q. Research and application of offset hole for peripheral blasting design and optimization [J]. Journal of Railway Science and Engineering, 2024, 21(4): 1509–1520. DOI: 10.19713/j.cnki.43-1423/u.T20230931.
    [22] BORRVALL T, SWEDEN L, RIEDEL W. The RHT concrete model in LS-DYNA [C]//Proceedings of the 8th European LS-DYNA Users Conference. Strasbourg, 2011.
    [23] 皇新宇, 纪强, 张宪堂, 等. 地应力作用下四孔掏槽爆破破岩机理数值模拟研究 [J]. 山东科技大学学报(自然科学版), 2022, 41(2): 60–69. DOI: 10.16452/j.cnki.sdkjzk.2022.02.007.

    HUANG X Y, JI Q, ZHANG X T, et al. Numerical simulation research on rock breaking mechanism of four-hole cut blasting under ground stress [J]. Journal of Shandong University of Science and Technology (Natural Science), 2022, 41(2): 60–69. DOI: 10.16452/j.cnki.sdkjzk.2022.02.007.
    [24] 毕程程, 王志亮, 石高扬, 等. 初始体积分数法在爆炸模拟中的应用 [J]. 工程爆破, 2017, 23(4): 26–33, 38. DOI: 10.3969/j.issn.1006-7051.2017.04.006.

    BI C C, WANG Z L, SHI G Y, et al. The application of initial volume fraction method in explosion simulation [J]. Engineering Blasting, 2017, 23(4): 26–33, 38. DOI: 10.3969/j.issn.1006-7051.2017.04.006.
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  29
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-24
  • 修回日期:  2024-09-03
  • 网络出版日期:  2024-09-06

目录

    /

    返回文章
    返回