爆炸冲击载荷下猪肺部的损伤特性

张佃元 于晨 郝文勇 李元 侯兵 索涛

张佃元, 于晨, 郝文勇, 李元, 侯兵, 索涛. 爆炸冲击载荷下猪肺部的损伤特性[J]. 爆炸与冲击, 2024, 44(12): 121433. doi: 10.11883/bzycj-2024-0262
引用本文: 张佃元, 于晨, 郝文勇, 李元, 侯兵, 索涛. 爆炸冲击载荷下猪肺部的损伤特性[J]. 爆炸与冲击, 2024, 44(12): 121433. doi: 10.11883/bzycj-2024-0262
ZHANG Dianyuan, YU Chen, HAO Wenyong, LI Yuan, HOU Bing, SUO Tao. Injury properties of porcine lung under blast load[J]. Explosion And Shock Waves, 2024, 44(12): 121433. doi: 10.11883/bzycj-2024-0262
Citation: ZHANG Dianyuan, YU Chen, HAO Wenyong, LI Yuan, HOU Bing, SUO Tao. Injury properties of porcine lung under blast load[J]. Explosion And Shock Waves, 2024, 44(12): 121433. doi: 10.11883/bzycj-2024-0262

爆炸冲击载荷下猪肺部的损伤特性

doi: 10.11883/bzycj-2024-0262
基金项目: 国家自然科学基金(12141203, U2341236)
详细信息
    作者简介:

    张佃元(2000- ),男,硕士研究生,dddy@mail.nwpu.edu.cn

    通讯作者:

    侯 兵(1982- ),女,博士,教授,博士生导师,houbing@nwpu.edu.cn

  • 中图分类号: O383

Injury properties of porcine lung under blast load

  • 摘要: 为了深入研究爆炸冲击波作用下生物体肺部的力学响应和损伤特性,首先建立了猪胸部有限元模型,借助新研制的PVDF (polyvinylidene fluoride)柔性冲击波压力传感器测试了激波管试验中动物的体表压力,验证了有限元模型的准确性。然后,使用已验证的模型开展了不同比例距离下猪肺部损伤特性研究,分析了在不同强度冲击波作用下肺部的损伤程度和损伤区域,并建立了胸肺部表皮压力峰值与肺损伤的关系。最后,通过开展爆炸试验,获得了不同比例距离下猪的肺部损伤情况和胸部表皮压力曲线,验证了所建立的胸肺部表皮压力峰值与肺损伤关系的正确性。
  • 图  1  猪胸部有限元模型

    Figure  1.  Finite element model of pig chest

    图  2  激波管试验设置

    Figure  2.  Shock tube test setup

    图  3  试验重复性以及PCB与PVDF的压力曲线对比

    Figure  3.  Test reproducibility as well as comparison of pressure curves between PCB and PVDF

    图  4  激波管冲击猪肺试验验证模型

    Figure  4.  Validation model of the shock tube test on pig lung

    图  5  不同位置处PVDF测得的压力(3次重复测试)与仿真压力曲线对比

    Figure  5.  Comparison of PVDF pressure and simulation pressure curves in different locations

    图  6  解剖结果与仿真模拟结果对比

    Figure  6.  Comparison of anatomical results with simulation results

    图  7  Z=1.48 m/kg1/3时应力波在猪胸部的传播过程

    Figure  7.  The propagation process of stress wave in pig chest with Z=1.48 m/kg1/3

    图  8  猪肺组织在不同比例距离处的压力云图

    Figure  8.  Pressure cloud images of pig lung tissue at different proportional distances

    图  9  最大胸廓运动速度与胸肺部表皮压力峰值的关系

    Figure  9.  Relationship between the maximum thoracic motion velocity and the peak pressure on the chest

    图  10  爆炸试验布置

    Figure  10.  Layout of the blast test

    图  11  不同爆距下的猪表皮压力曲线

    Figure  11.  Pressure histories on the chest of pig at different blast distances

    图  12  不同爆距处损伤猪肺的解剖图

    Figure  12.  Anatomies of pig lungs at different blast distances

    表  1  胸部模型骨骼材料参数

    Table  1.   Bone material parameters of chest model

    骨骼结构 密度/(kg∙m−3) 杨氏模量/MPa 泊松比 屈服强度/MPa
    胸椎骨 2500 11000 0.40
    胸椎间盘 1040 300 0.40
    胸骨皮质骨 2 000 14000 0.30 90
    肋间软骨 1500 12.5 0.40 4.9
    肋骨松质骨 1000 40 0.45 1.8
    肋骨皮质骨 2 000 11500 0.30 90
    胸骨松质骨 1000 40 0.45 1.8
    下载: 导出CSV

    表  2  胸部模型软组织材料参数

    Table  2.   Soft tissue material parameters of chest model

    组织 密度/(kg∙m−3) 线性体积模量/MPa 阻尼系数 剪切模量/MPa
    心脏 1000 100 0.1 0
    288 150 0.4 0.04
    1000 4.59 0.1 0
    肌肉 1000 2 000 0.4 0.04
    下载: 导出CSV

    表  3  不同比例距离下冲击波的等效参数

    Table  3.   The equivalent parameters of the shock wave at each proportional distance

    序号 WTNT/kg R/m Z/(m∙kg−1/3) Δpm/kPa τ+/ms
    1 1.08 2.30 2.27 150 2
    2 1.30 2.17 2.00 200 2
    3 1.70 2.00 1.66 300 2
    4 2.00 1.86 1.48 400 2
    下载: 导出CSV

    表  4  胸廓运动速度、猪胸肺部表皮压力峰值与肺部损伤的对应关系

    Table  4.   Relations between thoracic motility velocity, the peak pressure on the chest and the lung injury in pigs

    v/(m∙s−1) [30] p/kPa 肺损伤
    <3.6 <232 无伤
    3.6~7.5 232~609 微伤至轻伤
    4.3~9.8 294~865 轻伤至中伤
    7.5~16.9 609~1766 中伤至重伤
    >12.8 >1227 50%死亡
    下载: 导出CSV

    表  5  爆炸试验工况

    Table  5.   Blast test record

    试验编号猪编号猪质量/kgTNT质量/kg爆距/m比例距离/(m∙kg−1/3)
    11#24.0105.02.32
    2#25.5106.02.78
    3#27.0107.03.25
    24#27.5103.51.62
    5#24.5104.01.86
    6#24.0104.01.86
    37#24.0102.51.16
    8#25.5103.01.39
    9#26.0104.01.86
    下载: 导出CSV

    表  6  各个工况下猪肺部解剖伤情

    Table  6.   Anatomical injuries of pig lungs at various blast distances

    爆距/m肺部解剖伤情解剖结果(AIS评估)
    7.0没有明显损伤无伤
    6.0轻微损伤轻微肺损伤
    5.0轻微损伤轻微肺损伤
    4.0气管没有异常,左肺出血,右肺出血较严重轻度肺损伤
    3.0气管没有异常,左肺出血较严重,右肺出血严重中度到重度肺损伤
    2.5气管中有大量血沫,左肺出血较严重,右肺出血非常严重重度肺损伤
    下载: 导出CSV

    表  7  猪肺伤情汇总与损伤判据判断伤情

    Table  7.   Summary of pig lung injury and the injury criterion determines the severity of the injury

    爆距/m体表压力峰值/kPa解剖结果(AIS评估)预测结果(本文损伤关系)
    7.0128无伤无伤
    6.0270轻微肺损伤微伤至轻伤
    5.0403轻微肺损伤微伤至轻伤
    4.0559轻度肺损伤轻伤至中伤
    3.01253中度到重度肺损伤中伤至重伤
    2.51600重度肺损伤50%死亡
    下载: 导出CSV
  • [1] HUGHES S M, BORDERS III C W, ADEN J K, et al. Long-term outcomes of thoracic trauma in U. S. service members involved in combat operations [J]. Military Medicine, 2020, 185(11/12): 131–136. DOI: 10.1093/milmed/usaa165.
    [2] SALEM M H, BUX G M K, HUDEEL A. War thoracic wounds among civilians casualties in Aden during the 2015 [J]. Electronic Journal of University of Aden for Basic and Applied Sciences, 2020, 1(3): 159–166. DOI: 10.47372/ejua-ba.2020.3.39.
    [3] ZHANG B. Blast lung injury [M]//WANG Z G, JIANG J X. Explosive Blast Injuries: Principles and Practices. Singapore: Springer, 2023: 295–300. DOI: 10.1007/978-981-19-2856-7_19.
    [4] CERNAK I, SAVIC J, IGNJATOVIC D, et al. Blast injury from explosive munitions [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1999, 47(1): 96–103. DOI: 10.1097/00005373-199907000-00021.
    [5] SCOTT T E, KIRKMAN E, HAQUE M, et al. Primary blast lung injury: a review [J]. British Journal of Anaesthesia, 2017, 118(3): 311–316. DOI: 10.1093/bja/aew385.
    [6] SMITH J E. The epidemiology of blast lung injury during recent military conflicts: a retrospective database review of cases presenting to deployed military hospitals, 2003–2009 [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366(1562): 291–294. DOI: 10.1098/rstb.2010.0251.
    [7] TELAND J A. Review of blast injury prediction models: FFI-rapport 2012/00539 [R]. Norway: Norwegian Defence Research Establishment (FFI), 2012.
    [8] COOPER G J, TOWNEND D J, CATER S R, et al. The role of stress waves in thoracic visceral injury from blast loading: modification of stress transmission by foams and high-density materials [J]. Journal of Biomechanics, 1991, 24(5): 273–285. DOI: 10.1016/0021-9290(91)90346-O.
    [9] 唐献述, 王树民, 龙源, 等. 爆炸空气冲击波对动物伤害效应试验研究 [J]. 工程爆破, 2012, 18(2): 104–106, 96. DOI: 10.3969/j.issn.1006-7051.2012.02.028.

    TANG X S, WANG S M, LONG Y, et al. Experimental study on the effect of explosion air shockwave on the animal injury [J]. Engineering Blasting, 2012, 18(2): 104–106, 96. DOI: 10.3969/j.issn.1006-7051.2012.02.028.
    [10] 王海宾, 赵英虎, 高莉, 等. 甲烷爆炸冲击波作用下密闭管道内动物损伤效应试验研究 [J]. 兵工学报, 2018, 39(8): 1639–1647. DOI: 10.3969/j.issn.1000-1093.2018.08.022.

    WANG H B, ZHAO Y H, GAO L, et al. Experimental investigation into the damage effect of methane explosion shock wave on animals in enclosed pipeline [J]. Acta Armamentarii, 2018, 39(8): 1639–1647. DOI: 10.3969/j.issn.1000-1093.2018.08.022.
    [11] VASSOUT P, FRANKE R, PARMENTIER G, et al. Mesures de pression et d’accélérations intracorporelles chez le porc exposé à des ondes de choc fortes en champ libre [R]. France: French-German Research Institute of Saint Louis, 1986: 86.
    [12] 陈海斌, 王正国, 杨志焕, 等. 冲击波传播的三个时段模拟实验中动物肺的损伤 [J]. 爆炸与冲击, 2000, 20(3): 264–269. DOI: 10.11883/1001-1455(2000)03-0264-6.

    CHEN H B, WANG Z G, YANG Z H, et al. Injury of animal lungs in the experiments to simulate the three phases of shock wave propagation [J]. Explosion and Shock Waves, 2000, 20(3): 264–269. DOI: 10.11883/1001-1455(2000)03-0264-6.
    [13] 陈海斌, 王正国. 爆炸性减压对兔肺的损伤作用 [J]. 中华创伤杂志, 2000, 16(2): 109–111. DOI: 10.3760/j:issn:1001-8050.2000.02.016.

    CHEN H B, WANG Z G. Injury action on rabbit lung by explosive decompression [J]. Chinese Journal of Trauma, 2000, 16(2): 109–111. DOI: 10.3760/j:issn:1001-8050.2000.02.016.
    [14] 段维勋. 胸部爆炸伤动物模型的建立及伤情特点分析的实验研究 [D]. 西安: 第四军医大学, 2002: 1–64.

    DUAN W X. Experimental researches on establishment of animal model of thoracic explosive injury and analysis of wound characteristics [D]. Xi’an: Air Force Medical University, 2002: 1–64.
    [15] 王峰, 杨志焕, 朱佩芳, 等. 高原冲击伤伤情特点的实验研究 [J]. 创伤外科杂志, 2008, 10(6): 549–551. DOI: 10.3969/j.issn.1009-4237.2008.06.026.

    WANG F, YANG Z H, ZHU P F, et al. Experimental study on characteristics of blast injury at high altitude [J]. Journal of Traumatic Surgery, 2008, 10(6): 549–551. DOI: 10.3969/j.issn.1009-4237.2008.06.026.
    [16] 袁丹凤, 杨傲, 麻超, 等. 冲击波强度与幼年大鼠肺冲击伤程度的量效关系 [J]. 中国医学物理学杂志, 2021, 38(6): 780–784. DOI: 10.3969/j.issn.1005-202X.2021.06.022.

    YUAN D F, YANG A, MA C, et al. Dose-effect relationship between shock wave intensity and blast lung injury in juvenile rats [J]. Chinese Journal of Medical Physics, 2021, 38(6): 780–784. DOI: 10.3969/j.issn.1005-202X.2021.06.022.
    [17] 张良. 准静态撞击下猪胸腔内应力分布及其三维重现与肺损伤 [D]. 重庆: 中国人民解放军陆军军医大学, 2005: 1–56.

    ZHANG L. Distribution and 3-D reconstruction of intrathoracic stress in the swine chest subjected to impact [D]. Chongqing: Army Medical University, 2005: 1–56.
    [18] 杨春霞. 羊肺脏有限元模型的建立及其在冲击波作用下的仿真分析 [D]. 重庆: 重庆大学, 2010: 1–60.

    YANG C X. Establishmen of finite element model of sheep lung and finite-element simulation of blast wave [D]. Chongqing: Chongqing University, 2010: 1–60.
    [19] MORDAKA J, MEIJER R, VAN ROOIJ L, et al. Validation of a finite element human model for prediction of rib fractures: SAE technical paper 2007-01-1161 [R]. TNO Science and Industry: SAE, 2007.
    [20] KIMPARA H, LEE J B, YANG K H, et al. Development of a three-dimensional finite element chest model for the 5th percentile female [R]. Wayne State University, Toyota Central R & D Labs., Inc.: SAE, 2005.
    [21] SHIN J, UNTAROIU C, LESSLEY D, et al. Thoracic response to shoulder belt loading: investigation of chest stiffness and longitudinal strain pattern of ribs: SAE technical paper 2009-01-0384 [R]. Center for Applied Biomechanics, University of Virginia: SAE, 2009. DOI: 10.4271/2009-01-0384.
    [22] IWAMOTO M, NAKAHIRA Y, TAMURA A, et al. Development of advanced human models in THUMS [C]//Proceedings of the 6th European LS-DYNA Users’ Conference. Nagakute City: Toyota Central R&D Labs., Inc., 2007.
    [23] YANG K H, HU J W, WHITE N A, et al. Development of numerical models for injury biomechanics research: a review of 50 years of publications in the Stapp car crash conference [C]//Proceedings of the 50th Stapp Car Crash Conference. Dearborn, Michigan: SAE, 2006: 429–490.
    [24] RUAN J, EL-JAWAHRI R, CHAI L, et al. Prediction and analysis of human thoracic impact responses and injuries in cadaver impacts using a full human body finite element model [C]//Proceedings of the 47th Stapp Car Crash Conference. San Diego: SAE, 2003.
    [25] ROBIN S. HUMOS: human model for safety: a joint effort towards the development of refined human-like car occupant models [C]//Proceedings of the 17th International Technical Conference on the Enhanced Safety of Vehicles. Amsterdam: SAE, 2001.
    [26] RUAN J S, EL-JAWAHRI R, BARBAT S, et al. Biomechanical analysis of human abdominal impact responses and injuries through finite element simulations of a full human body model [C]//Proceedings of the 49th Stapp Car Crash Conference. National Library of Medicine: SAE, 2005.
    [27] 范志强, 常瀚林, 何天明, 等. 基于PVDF复合压电效应的低强度冲击波柔性测量 [J]. 爆炸与冲击, 2023, 43(1): 013102. DOI: 10.11883/bzycj-2022-0152.

    FAN Z Q, CHANG H L, HE T M, et al. Flexible measurement of low-intensity shock wave based on coupling piezoelectric effect of PVDF [J]. Explosion and Shock Waves, 2023, 43(1): 013102. DOI: 10.11883/bzycj-2022-0152.
    [28] GREER A. Numerical modeling for the prediction of primary blast injury to the lung [D]. Waterloo: University of Waterloo, 2007: 117–141.
    [29] 卢芳云, 蒋邦海, 李翔宇, 等. 武器战斗部投射与毁伤 [M]. 北京: 科学出版社, 2013: 1–316.
    [30] AXELSSON H, YELVERTON J T. Chest wall velocity as a predictor of nonauditory blast injury in a complex wave environment [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1996, 40(3S): 31S–37S. DOI: 10.1097/00005373-199603001-00006.
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  30
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-06
  • 修回日期:  2024-10-18
  • 网络出版日期:  2024-11-05
  • 刊出日期:  2024-12-01

目录

    /

    返回文章
    返回