• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

硬脂酸包覆铝粉爆炸火焰传播机理研究

黄钰雄 郭瑞 秦江 牛艳杰 徐畅 张新燕

黄钰雄, 郭瑞, 秦江, 牛艳杰, 徐畅, 张新燕. 硬脂酸包覆铝粉爆炸火焰传播机理研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0268
引用本文: 黄钰雄, 郭瑞, 秦江, 牛艳杰, 徐畅, 张新燕. 硬脂酸包覆铝粉爆炸火焰传播机理研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0268
HUANG Yuxiong, GUO Rui, QIN Jiang, NIU Yanjie, XU Chang, ZHANG Xinyan. Study on the mechanism of explosion flame propagation of aluminum powder coated with stearic acid[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0268
Citation: HUANG Yuxiong, GUO Rui, QIN Jiang, NIU Yanjie, XU Chang, ZHANG Xinyan. Study on the mechanism of explosion flame propagation of aluminum powder coated with stearic acid[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0268

硬脂酸包覆铝粉爆炸火焰传播机理研究

doi: 10.11883/bzycj-2024-0268
基金项目: 国家自然科学基金(51904170);国家重点研发计划(2023YFC3010604);山东省自然科学基金(ZR2024ME195)
详细信息
    作者简介:

    黄钰雄(1997- ),男,硕士研究生,13966342593@163.com

    通讯作者:

    张新燕(1987- ),女,博士,副教授,xyzhang_safety@sdust.edu.cn

  • 中图分类号: O389; X932

Study on the mechanism of explosion flame propagation of aluminum powder coated with stearic acid

  • 摘要: 为了探究包覆铝粉爆炸火焰的发展演化规律与传播机理,采用溶剂蒸发法制备了壳-核结构硬脂酸包覆铝粉(SA@Al),利用改进的哈特曼管进行实验,研究了粉尘云浓度对5%、10%与15%包覆浓度SA@Al粉尘爆炸火焰传播特性的影响;同时采用CHEMKIN模拟分析其气相爆炸反应动力学特征,从而揭示SA@Al爆炸火焰传播机理。结果表明,随着粉尘云浓度的增大,5%、10%和15%包覆浓度SA@Al粉尘爆炸火焰的饱满度和连续性均先增强后减弱,平均火焰传播速度均呈先增大后减小的趋势,当粉尘云浓度为500 g/m3时火焰传播速度均达到最大。相比而言,纯铝粉爆炸火焰传播速度在750 g/m3时达到最大,表明硬脂酸包覆层促进了铝粉爆炸火焰的传播。此外,各粉尘云浓度下,10%包覆浓度SA@Al爆炸火焰最剧烈,平均火焰传播速度最大。SA@Al爆炸火焰升温主要包括快速升温和缓慢升温2个阶段,快速升温阶段R2、R11和R10的温度敏感性较高,缓慢升温阶段R5、R11的温度敏感性较高。粉尘云浓度对缓慢升温阶段的温升速率影响显著,使得500 g/m3时SA@Al的爆炸平衡温度最高。硬脂酸包覆层的燃烧促进了铝核的氧化,使爆炸反应得以强化,但过高的粉尘云浓度会导致O自由基受限,在一定程度上削弱反应强度。
  • 图  1  硬脂酸包覆铝粉的制备流程

    Figure  1.  Preparation process of stearic acid-coated aluminum powder

    图  2  铝粉和10% SA@Al的扫描电子显微镜图像

    Figure  2.  Scanning electron microscope images of Al and 10% SA@Al dust

    图  3  铝粉和10% SA@Al的X射线衍射图谱

    Figure  3.  X-ray diffraction images of Al and 10% SA@Al dust

    图  4  纯铝粉及10% SA@Al粉尘的粒度分布

    Figure  4.  Particle size distribution of Al and 10% SA@Al dust

    图  5  改进的哈特曼管实验装置示意图

    Figure  5.  Improved Hartmann tube explosion test device

    图  6  不同粉尘云浓度的Al粉尘云爆炸火焰传播行为

    Figure  6.  Flame propagations of Al dust clouds with various dust cloud concentrations

    图  7  不同粉尘云浓度的5% SA@Al粉尘云爆炸火焰传播行为

    Figure  7.  Flame propagations of 5% SA@Al dust clouds with various dust cloud concentrations

    图  8  不同粉尘云浓度的10% SA@Al粉尘云爆炸火焰传播行为

    Figure  8.  Flame propagations of 10% SA@Al dust clouds with various dust cloud concentrations

    图  9  不同粉尘云浓度的15% SA@Al粉尘云爆炸火焰传播行为

    Figure  9.  Flame propagations of 15% SA@Al dust clouds with various dust cloud concentrations

    图  10  不同粉尘云浓度下Al、5% SA@Al、10% SA@Al和15% SA@Al粉尘云的爆炸火焰传播速度

    Figure  10.  Explosion flame propagation velocity of Al, 5% SA@Al, 10% SA@Al, and 15% SA@Al dust clouds under different dust cloud concentrations

    图  11  Al和10% SA@Al粉尘爆炸火焰中主要物种的摩尔分数分布

    Figure  11.  Mole fraction distribution of major components in the explosion flame of Al and 10% SA@Al dust

    图  12  Al和10% SA@Al粉尘爆炸温度变化曲线

    Figure  12.  Variation curves of explosion temperature for Al and 10% SA@Al dust

    图  13  不同粉尘云浓度的10% SA@Al粉尘爆炸过程中的温度敏感度变化

    Figure  13.  Variation of temperature sensitivity during explosion of 10% SA@Al dust at different dust cloud concentrations

    图  14  不同粉尘云浓度的10% SA@Al粉尘爆炸过程中的O自由基含量变化

    Figure  14.  Variation of O radical content during the explosion of different dust cloud concentrations of 10% SA@Al dust

    图  15  不同粉尘云浓度下10% SA@Al粉尘爆炸过程中的O自由基敏感度分析

    Figure  15.  O radical sensitivity analysis during explosion of 10% SA@Al dust under different dust cloud concentrations

    图  16  SA@Al粉尘云火焰传播机理物理模型

    Figure  16.  Physical model of flame propagation of SA@Al dust cloud

  • [1] LIANG L, GUO X D, LIAO X, et al. Improve the interfacial adhesion, corrosion resistance and combustion properties of aluminum powder by modification of nickel and dopamine [J]. Applied Surface Science, 2020, 508: 144790. DOI: 10.1016/j.apsusc.2019.144790.
    [2] 尚方静, 王文先, 杨涛, 等. 镍包覆氧化铝增强铁基复合材料的界面行为及其耐磨性 [J]. 稀有金属材料与工程, 2022, 51(2): 422–428. DOI: 10.12442/j.issn.1002-185X.20200982.

    SHANG F J, WANG W X, YANG T, et al. Interaction mechanism and wear resistance of Ni-encapsulated Al2O3 particles reinforced iron matrix composites [J]. Rare Metal Materials and Engineering, 2022, 51(2): 422–428. DOI: 10.12442/j.issn.1002-185X.20200982.
    [3] SUN J, PANTOYA M L, SIMON S L. Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3 [J]. Thermochimica Acta, 2006, 444(2): 117–127. DOI: 10.1016/j.tca.2006.03.001.
    [4] GROMOV A A, FÖRTER-BARTH U, TEIPEL U. Aluminum nanopowders produced by electrical explosion of wires and passivated by non-inert coatings: characterisation and reactivity with air and water [J]. Powder Technology, 2006, 164(2): 111–115. DOI: 10.1016/j.powtec.2006.03.003.
    [5] LIU H, YE H Q, ZHANG Y C. Preparation and characterization of PMMA/flaky aluminum composite particle in the presence of MPS [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 315(1/2/3): 1–6. DOI: 10.1016/j.colsurfa.2007.06.057.
    [6] CHEN J S, CHEN K, SHI W X, et al. The preparation of novel core-shell suppressor and its suppression mechanism on coal dust explosion flame [J]. Fuel, 2022, 313: 122997. DOI: 10.1016/j.fuel.2021.122997.
    [7] ESCOT BOCANEGRA P, CHAUVEAU C, GÖKALP I. Experimental studies on the burning of coated and uncoated micro and nano-sized aluminium particles [J]. Aerospace Science and Technology, 2007, 11(1): 33–38. DOI: 10.1016/j.ast.2006.10.005.
    [8] JIANG H P, BI M S, ZHANG J K, et al. Explosion hazard and prevention of Al-Ni mechanical alloy powders [J]. Journal of Loss Prevention in the Process Industries, 2022, 75: 104714. DOI: 10.1016/j.jlp.2021.104714.
    [9] LYU X, GAO Y, CUI Y S, et al. Study of ignition and combustion characteristics of kerosene-based nanofluid fuel containing n-Al/CuO thermite [J]. Fuel, 2023, 331: 125778. DOI: 10.1016/j.fuel.2022.125778.
    [10] XIAO F, LIU Z H, LIANG T X, et al. Establishing the interface layer on the aluminum surface through the self-assembly of tannic acid (TA): improving the ignition and combustion properties of aluminum [J]. Chemical Engineering Journal, 2021, 420(Pt3): 130523. DOI: 10.1016/j.cej.2021.130523.
    [11] XU J T, HUANG L, JIANG H P, et al. Explosion characteristics of aluminum-based activated fuels containing fluorine [J]. Defence Technology, 2023, 20: 34–43. DOI: 10.1016/j.dt.2021.12.008.
    [12] KWON Y S, GROMOV A A, STROKOVA J I. Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin [J]. Applied Surface Science, 2007, 253(12): 5558–5564. DOI: 10.1016/j.apsusc.2006.12.124.
    [13] 商琦伟. 铝粉/氟化物的研制及其性能研究 [D]. 太原: 中北大学, 2023. DOI: 10.27470/d.cnki.ghbgc.2023.001368.

    SHANG Q W. Preparation and properties of aluminum powder/fluoride [D]. Taiyuan: North University of China, 2023. DOI: 10.27470/d.cnki.ghbgc.2023.001368.
    [14] LI N, ZHANG Y S, GUO R, et al. Effect of stearic acid coating on the explosion characteristics of aluminum dust [J]. Fuel, 2022, 320: 123880. DOI: 10.1016/j.fuel.2022.123880.
    [15] SOSSI A, DURANTI E, PARAVAN C, et al. Non-isothermal oxidation of aluminum nanopowder coated by hydrocarbons and fluorohydrocarbons [J]. Applied Surface Science, 2013, 271: 337–343. DOI: 10.1016/j.apsusc.2013.01.197.
    [16] 堵同宽, 朱宝忠, 李浩, 等. 硬脂酸包覆纳米铝粉燃烧特性 [J]. 安徽工业大学学报(自然科学版), 2016, 33(1): 23–27. DOI: 10.3969/j.issn.1671-7872.2016.01.006.

    DU T K, ZHU B Z, LI H, et al. Combustion characteristics of stearic acid-coated aluminum nanopowder [J]. Journal of Anhui University of Technology (Natural Science), 2016, 33(1): 23–27. DOI: 10.3969/j.issn.1671-7872.2016.01.006.
    [17] GUO R, LI N, ZHANG X Y, ZHANG Y S, et al. Suppression mechanism of micron/nano PMMA dust flame based on thermal analysis [J]. Advanced Powder Technology, 2022, 33(12): 103848. DOI: 10.1016/j.apt.2022.103848.
    [18] 张延松, 李南, 郭瑞, 等. 月桂酸与硬脂酸粉尘爆炸过程热解动力学与火焰传播特性关系 [J]. 爆炸与冲击, 2022, 42(7): 075402. DOI: 10.11883/bzycj-2021-0470.

    ZHANG Y S, LI N, GUO R, et al. Relationship between pyrolysis kinetics and flame propagation characteristics of lauric acid and stearic acid dust [J]. Explosion and Shock Waves, 2022, 42(7): 075402. DOI: 10.11883/bzycj-2021-0470.
    [19] KIM K T, KIM D W, KIM S H, et al. Synthesis and improved explosion behaviors of aluminum powders coated with nano-sized nickel film [J]. Applied Surface Science, 2017, 415: 104–108. DOI: 10.1016/j.apsusc.2016.11.056.
    [20] ZHU C C, GAO W, JIANG H P, et al. A comparative investigation of the explosion mechanism of metal hydride AlH3 dust and Al/H2 mixture [J]. International Journal of Hydrogen Energy, 2024, 50: 1296–1305. DOI: 10.1016/j.ijhydene.2023.10.178.
    [21] LI Q Z, WANG K, ZHENG Y N, et al. Explosion severity of micro-sized aluminum dust and its flame propagation properties in 20 L spherical vessel [J]. Powder Technology, 2016, 301: 1299–1308. DOI: 10.1016/j.powtec.2016.08.012.
  • 加载中
图(16)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  17
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-06
  • 修回日期:  2025-01-09
  • 网络出版日期:  2025-01-10

目录

    /

    返回文章
    返回