• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

爆炸作用下RC T型梁桥桥面局部损伤快速评估

王子国 孔祥佳 彭永 马亮亮 孙宇雁 尚洪坤

王子国, 孔祥佳, 彭永, 马亮亮, 孙宇雁, 尚洪坤. 爆炸作用下RC T型梁桥桥面局部损伤快速评估[J]. 爆炸与冲击, 2025, 45(11): 113901. doi: 10.11883/bzycj-2024-0273
引用本文: 王子国, 孔祥佳, 彭永, 马亮亮, 孙宇雁, 尚洪坤. 爆炸作用下RC T型梁桥桥面局部损伤快速评估[J]. 爆炸与冲击, 2025, 45(11): 113901. doi: 10.11883/bzycj-2024-0273
WANG Ziguo, KONG Xiangjia, PENG Yong, MA Liangliang, SUN Yuyan, SHANG Hongkun. Rapid assessment of local damage in reinforced concrete T-beam bridge decks under blast loading[J]. Explosion And Shock Waves, 2025, 45(11): 113901. doi: 10.11883/bzycj-2024-0273
Citation: WANG Ziguo, KONG Xiangjia, PENG Yong, MA Liangliang, SUN Yuyan, SHANG Hongkun. Rapid assessment of local damage in reinforced concrete T-beam bridge decks under blast loading[J]. Explosion And Shock Waves, 2025, 45(11): 113901. doi: 10.11883/bzycj-2024-0273

爆炸作用下RC T型梁桥桥面局部损伤快速评估

doi: 10.11883/bzycj-2024-0273
基金项目: 国家自然科学基金(52578591);山东省自然科学基金(ZR2024ME146)
详细信息
    作者简介:

    王子国(1982- ),男,博士,副教授,wangziguo@qut.edu.cn

    通讯作者:

    彭 永(1989- ),男,博士,副教授,pengy116@163.com

  • 中图分类号: O389

Rapid assessment of local damage in reinforced concrete T-beam bridge decks under blast loading

  • 摘要: 以预应力钢筋混凝土(reinforced concrete, RC) T型梁桥桥面板经爆炸荷载作用后的破口尺寸为损伤指标,结合数值模拟与多元非线性回归分析,开展桥面损伤快速评估研究。结果表明:通过比较爆炸作用下桥面板破口的横向尺寸,发现混凝土强度的影响相对较小,而爆炸位置、桥面厚度、横隔板间距、TNT当量及比例爆距等参数的影响较显著;由于腹板和横隔板对桥面板具有较强的增强和约束作用,在其他条件相同的情况下,腹板与横隔板之间的桥面板上方爆炸产生的破口横向尺寸显著小于腹板正上方爆炸,且桥上爆炸的损伤程度显著小于桥下爆炸。基于上述影响较大的参数,提出以破口横向尺寸为损伤指标构建预测桥梁炸后通行能力的爆炸快速损伤评估公式。
  • 图  1  桥上爆炸工况示意图(单位:mm)

    Figure  1.  Schematic diagram of explosion cases on the bridge (unit: mm)

    图  2  桥上爆炸试验的有限元模型

    Figure  2.  Finite element model of the explosion test on the bridge

    图  3  超压与正相冲量结果分析

    Figure  3.  Analysis of overpressure and positive phase impulse results

    图  4  破坏模式比较(单位:mm)

    Figure  4.  Comparison of damage patterns (unit: mm)

    图  5  原型梁桥有限元模型及配筋情况(单位:mm)

    Figure  5.  Finite element model and reinforcement of prototype girder bridge (unit: mm)

    图  6  典型爆炸位置示意图

    Figure  6.  Schematic diagram of a typical explosion location

    图  7  不同位置爆炸损伤云图与破口宽度

    Figure  7.  Blast damage contours and breach width at different locations

    图  8  不同混凝土强度下桥面板的损伤云图与破口宽度

    Figure  8.  Damage contours and breach width of bridge deck slabs with different concrete strengths

    图  9  不同厚度桥面桥上爆炸的桥面板损伤云图与破口横向宽度

    Figure  9.  Damage contours and the transverse breach width of bridge deck slab on the bridge with varying slab thicknesses

    图  10  不同厚度桥面桥下爆炸的桥面板损伤云图与破口横向宽度

    Figure  10.  Damage contours and the transverse breach width of bridge deck slab under the bridge with varying slab thicknesses

    图  11  不同横隔板间距桥上爆炸的桥面板损伤云图与破口横向宽度

    Figure  11.  Damage contours and the transverse breach width of bridge deck slab on the bridge with different diaphragm spacing

    图  12  不同横隔板间距桥下爆炸的桥面板损伤云图与破口横向宽度

    Figure  12.  Damage contours and the transverse breach width of bridge deck slab under the bridge with different diaphragm spacing

    图  13  不同比例爆距桥上爆炸的桥面板损伤云图与破口横向宽度

    Figure  13.  Damage contours and transverse breach width of bridge deck slab on the bridge under different scaled distances

    图  14  不同比例爆距桥下爆炸的桥面板损伤云图与破口横向宽度

    Figure  14.  Damage contours and transverse breach width of bridge deck slab on the bridge under different scaled distances

    图  15  桥上爆炸无量纲破口横向宽度拟合曲面

    Figure  15.  Fitted surfaces for the transverse width of an exploded dimensionless breach in a bridge

    图  16  桥下爆炸无量纲破口横向宽度拟合曲面

    Figure  16.  Fitted surfaces for the transverse width of dimensionless breaches in under-bridge explosions

    表  1  混凝土材料模型参数

    Table  1.   Parameters of concrete material model

    密度/(kg·m−3)圆柱体单轴抗压强度/MPa最大失效主应变
    2 400450.01
    下载: 导出CSV

    表  2  钢筋和预应力筋材料模型参数

    Table  2.   Parameters of material model for reinforcing steel material and prestressing steel reinforcement

    材料密度/(kg·m−3)C/s−1P泊松比屈服应力/MPa弹性模量/GPa失效应变
    钢筋7 8004050.3300/465/4202060.15
    预应力筋7 8004050.31 8601990.05
    下载: 导出CSV

    表  3  橡胶支座材料模型参数

    Table  3.   Parameters of material model for rubber bearing

    密度/(kg·m−3) 体积模量/GPa 短时剪切模量/MPa 长时剪切模量/MPa
    2 300 182 18.35 17.32
    下载: 导出CSV

    表  4  TNT材料模型参数

    Table  4.   TNT material parameters

    密度/(kg·m−3) 爆速/(m·s−1) C-J压力/GPa A/GPa B/GPa R1 R2 ω E/(J·m−3)
    1 630 6 930 21 373.8 3.747 4.15 0.9 0.35 6×109
    下载: 导出CSV

    表  5  空气材料模型参数

    Table  5.   Air material parameters

    密度/(kg·m−3) 动态黏性系数 截断压力 初始能量/(J·m−3) C0 C1 C2 C3 C4 C5 C6
    1.29 0 0 2.5×105 0 0 0 0 0.4 0.4 0
    下载: 导出CSV

    表  6  T型梁构件尺寸

    Table  6.   T-beam member dimensions

    桥梁跨度
    l0/m
    T型梁
    数量
    T型梁高度
    h/m
    腹板宽度
    b/m
    腹板间净距
    sn/m
    T型梁宽度
    $b_{\rm{f}}' $/m
    40 5 2.5 0.25 2 2.25
    下载: 导出CSV

    表  7  参数影响分析爆炸工况

    Table  7.   Explosion cases for parameter influence analysis

    爆炸位置 混凝土
    强度
    T型梁翼缘
    厚度/mm
    横隔板
    间距/m
    TNT当量/
    kg
    比例爆距/
    (m·kg−1/3)
    L1-2U/L2-2U C50 300 10.0 100 0.20
    C40 300 10.0 0.20
    C50 200 10.0 0.20
    C50 400 10.0 0.20
    C50 300 5.0 0.20
    C50 300 7.5 0.20
    C50 300 10.0 0.05
    C50 300 10.0 0.10
    C50 300 10.0 0.30
    L1-2D/L2-2D C50 200 10.0 100 0.20
    C50 400 10.0 0.20
    C50 300 5.0 0.20
    C50 300 7.5 0.20
    C50 300 10.0 0.05
    C50 300 10.0 0.10
    C50 300 10.0 0.30
    下载: 导出CSV

    表  8  预测值与数值模拟结果的对比

    Table  8.   Comparison of predicted values and numerical simulation results

    TNT当量/kg 比例爆距/(m·kg–1/3) 破口宽度/m 预测值/m 相对误差/%
    50 0.20 1.973 1.681 –15
    0.10 1.973 2.047 3
    0.30 1.381 1.519 10
    0.05 1.974 2.010 2
    10 0.20 0
    0.10 0.690 0.598 –13
    0.30 0
    0.05 0.691 0.563 –19
    下载: 导出CSV
  • [1] Transportation Officials, Subcommittee on Bridges. AASHTO guide specifications for LRFD seismic bridge design [S]. AASHTO, 2011.
    [2] WILLIAMSON E B. Blast-resistant highway bridges: design and detailing guidelines [S]. Transportation Research Board, 2010.
    [3] WILLIAMSON E B, BAYRAK O, DAVIS C, et al. Performance of bridge columns subjected to blast loads. Ⅰ: experimental program [J]. Journal of Bridge Engineering, 2011, 16(6): 693–702. DOI: 10.1061/(ASCE)BE.1943-5592.0000220.
    [4] WILLIAMSON E B, BAYRAK O, DAVIS C, et al. Performance of bridge columns subjected to blast loads. Ⅱ: results and recommendations [J]. Journal of Bridge Engineering, 2011, 16(6): 703–710. DOI: 10.1061/(ASCE)BE.1943-5592.0000221.
    [5] 刘路. 不同防护方式下钢筋混凝土墩柱的抗爆性能试验研究 [D]. 南京: 东南大学, 2016.

    LIU L. Experimentalstudy of differently protective RC piers under blast loading [D]. Nanjing: Southeast University, 2016.
    [6] 刘路, 宗周红, 周海飞, 等. 近场爆炸作用下节段预制拼装RC桥墩的易损性评估 [J]. 中国公路学报, 2024, 37(4): 212–223. DOI: 10.19721/j.cnki.1001-7372.2024.04.017.

    LIU L, ZONG Z H, ZHOU H F, et al. Vulnerability assessment of precast segmental RC bridge piers under near-field explosion [J]. China Journal of Highway and Transport, 2024, 37(4): 212–223. DOI: 10.19721/j.cnki.1001-7372.2024.04.017.
    [7] 唐彪. 钢筋混凝土墩柱的抗爆性能试验研究 [D]. 南京: 东南大学, 2016.

    TANG B. Experimental investigation of reinforced concrete bridge piers under blast loading [D]. Nanjing: Southeast University, 2016.
    [8] XU J P, WU H, MA L L, et al. Residual axial capacity of seismically designed RC bridge pier after near-range explosion of vehicle bombs [J]. Engineering Structures, 2022, 265: 114487. DOI: 10.1016/j.engstruct.2022.114487.
    [9] XU J P, WANG Z G, CHENG Y H, et al. Blast resistance of ultra high performance concrete-filled steel tube (UHPC-FST) pier against vehicular bombs [J]. Thin-Walled Structures, 2023, 190: 110990. DOI: 10.1016/j.tws.2023.110990.
    [10] ZHANG R, LIU J, XU J, et al. Low-damage performance of blast resilient steel rocking column base with friction connection [J]. Thin-Walled Structures, 2024, 197: 111598. DOI: 10.1016/j.tws.2024.111598.
    [11] SHI Y C, HONG H, LI Z X. Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35(11): 1213–1227. DOI: 10.1016/j.ijimpeng.2007.09.001.
    [12] 师燕超. 爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理 [D]. 天津: 天津大学, 2009.

    SHI Y C. Dynamic response and damage mechanism of reinforced concrete structures under blast loading [D]. Tianjin: Tianjin University, 2009.
    [13] 张想柏, 杨秀敏, 陈肇元, 等. 接触爆炸钢筋混凝土板的震塌效应 [J]. 清华大学学报(自然科学版), 2006(6): 765–768. DOI: 10.16511/j.cnki.qhdxxb.2006.06.004.

    ZHANG X B, YANG X M, CHEN Z Y, et al. Explosion spalling of reinforced concrete slabs with contact detonations [J]. Journal of Tsinghua University (Science and Technology), 2006(6): 765–768. DOI: 10.16511/j.cnki.qhdxxb.2006.06.004.
    [14] WANG W, ZHANG D, LU F Y, et al. Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading [J]. International Journal of Impact Engineering, 2012, 49: 158–164. DOI: 10.1016/j.ijimpeng.2012.03.010.
    [15] 李宝岩. 爆炸荷载下预应力T梁动态响应研究 [D]. 长沙: 国防科技大学, 2021.

    LI B Y. Dynamic response study of prestressed T-beams under blasting loads [D]. Changsha: National University of Defense Technology, 2021.
    [16] 王硕. 预应力T梁梁端爆炸毁伤机理及T梁桥毁伤评估 [D]. 长沙: 国防科技大学, 2023.

    WANG S. Damage mechanisms of prestressed T-beam ends and damage assessments of T-beam bridges under blasting loads [D]. Changsha: National University of Defense Technology, 2023.
    [17] 蔡路军, 杜刚, 高琴, 等. 爆破冲击荷载下混凝土T梁桥实验 [J]. 工程爆破, 2018, 24(1): 8–12, 19. DOI: 10.3969/j.issn.1006-7051.2018.01.002.

    CAI L J, DU G, GAO Q, et al. Experimental of concrete T beam bridge under blasting load [J]. Engineering Blasting, 2018, 24(1): 8–12, 19. DOI: 10.3969/j.issn.1006-7051.2018.01.002.
    [18] YI Z, AGRAWAL A K, ETTOUNEY M, et al. Blast load effects on highway bridges. Ⅱ: failure modes and multihazard correlations [J]. Journal of Bridge Engineering, 2014, 19(4): 04013024. DOI: 10.1061/(ASCE)BE.1943-5592.0000548.
    [19] 王向阳, 冯英骥. 爆炸冲击作用下连续梁桥动力响应和影响因素研究 [J]. 爆破, 2017, 34(3): 104–113. DOI: 10.3963/j.issn.1001-487X.2017.03.019.

    WANG X Y, FENG Y J. Study of dynamic response and inf1uence factors of continuous girder bridge under blast loading [J]. Blasting, 2017, 34(3): 104–113. DOI: 10.3963/j.issn.1001-487X.2017.03.019.
    [20] 娄凡. 预应力混凝土连续T梁的抗爆性能试验研究 [D]. 南京: 东南大学, 2018.

    LOU F. Experimental study on blast resistance of prestressed concrete continuous T beams [D]. Nanjing: Southeast University, 2018.
    [21] 院素静. 爆炸荷载作用下混凝土梁桥倒塌破坏机理研究 [D]. 南京: 东南大学, 2019.

    YUAN S J. Study on collapse failure mechanism of concrete girder bridge under explosion load [D]. Nanjing: Southeast University, 2019.
    [22] 院素静, 宗周红, 娄凡, 等. 预应力混凝土连续梁桥桥面爆炸损伤试验研究 [J]. 中国公路学报, 2022, 35(11): 160–170. DOI: 10.19721/j.cnki.1001-7372.2022.11.015.

    YUAN S J, ZONG Z H, LOU F, et al. Experimental study on damage of prestressed concrete continuous girder bridge subjected to explosions above the deck [J]. China Journal of Highway and Transport, 2022, 35(11): 160–170. DOI: 10.19721/j.cnki.1001-7372.2022.11.015.
    [23] 院素静, 宗周红, 林津, 等. 接触爆炸下混凝土连续梁桥倒塌破坏试验研究 [J]. 中国公路学报, 2024, 37(11): 139–151. DOI: 10.19721/j.cnki.1001-7372.2024.11.011.

    YUAN S J, ZONG Z H, LIN J, et al. Experimental study on collapse failure of concrete continuous girder bridges under contact explosion [J]. China Journal of Highway and Transport, 2024, 37(11): 139–151. DOI: 10.19721/j.cnki.1001-7372.2024.11.011.
    [24] MA L L, WU H, FANG Q. Damage mode and dynamic response of RC girder bridge under explosions [J]. Engineering Structures, 2021, 243: 112676. DOI: 10.1016/j.engstruct.2021.112676.
    [25] MA L L, WU H, FANG Q, et al. Displacement-based blast-resistant evaluation for simply-supported RC girder bridge under below-deck explosions [J]. Engineering Structures, 2022, 266: 114637. DOI: 10.1016/j.engstruct.2022.114637.
    [26] 马亮亮, 吴昊. 爆炸作用下预应力RC梁桥的损伤评估 [J]. 工程力学, 2025, 42(11): 159–172. DOI: 10.6052/j.issn.1000-4750.2023.05.0378.

    MA L L, WU H. Damage assessment of prestressed RC girderbridge under explosion [J]. Engineering Mechanics, 2025, 42(11): 159–172. DOI: 10.6052/j.issn.1000-4750.2023.05.0378.
    [27] HU J H, DENG Y J, JIAO W J, et al. Dynamic response and damage assessment of a prestressed T-shaped simply supported girder bridge under contact explosion [C]//Structures. Elsevier, 2023, 48: 40–52. DOI: 10.1016/j.istruc.2022.12.077.
    [28] Livermore Software Technology Corporation (LSTC). LS-DYNA keyword user’s manual [M]. Livermore Software Technology Corporation, 2022.
    [29] Comité Euro-International du Béton. CEB-FIP model code 1990: design code [M]. Thomas Telford Publishing, 1993.
    [30] 民用建筑防爆设计标准: T/CECS736 2020 [S]. 2020.

    Standard for blast protection design of civil buildings: T/CECS736 2020 [S]. 2020.
    [31] 交通运输部. 2023年交通运输行业发展统计公报 [N]. 中国交通报, 2024-06-18(002). DOI: 10.28099/n.cnki.ncjtb.2024.001085.
    [32] 交通运输部公路局, 中交第一公路勘察设计研究院有限公司. 公路工程技术标准: JTG B01—2014 [S]. 北京: 人民交通出版社, 2014.

    Ministry of Transport Highway Bureau, CCCC First Highway Consultants Co. Ltd. Technical standard of highway engineering: JTG B01—2014 [S]. Beijing: China Communications Press, 2014.
    [33] 中交公路规划设计院有限公司. 公路钢筋混凝土及预应力混凝土桥涵设计规范: JTG 3362—2018 [S]. 北京: 人民交通出版社, 2018.
    [34] 姚玲森. 桥梁工程 [M]. 北京: 人民交通出版社, 2021.
    [35] XIAO Y, ZHU W Q, LI M H, et al. Concrete spalling behavior and damage evaluation of concrete members with different cross-sectional properties under contact explosion [J]. International Journal of Impact Engineering, 2023, 181: 104753. DOI: 10.1016/j.ijimpeng.2023.104753.
    [36] 中交第二公路勘察设计研究院有限公司. 公路装配式混凝土桥梁设计规范: JTG/T 3365-05—2022 [S]. 北京: 人民交通出版社, 2022.
    [37] Unified Facilities Criteria. Structures to resist the effects of accidental explosions available from national institute of building sciences: UFC3-340-02 [S]. Washington DC, USA: 1090 Vermont Avenue NW, Suite 700, 2008.
  • 加载中
图(16) / 表(8)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  133
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-12
  • 修回日期:  2025-03-28
  • 网络出版日期:  2025-04-08
  • 刊出日期:  2025-11-05

目录

    /

    返回文章
    返回