• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

高温高压下CH4/C2H6及C2H6/H2O在纯氧中的爆炸上限

吴传栋 曹栋 祁畅 闫兴清 喻健良

吴传栋, 曹栋, 祁畅, 闫兴清, 喻健良. 高温高压下CH4/C2H6及C2H6/H2O在纯氧中的爆炸上限[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0277
引用本文: 吴传栋, 曹栋, 祁畅, 闫兴清, 喻健良. 高温高压下CH4/C2H6及C2H6/H2O在纯氧中的爆炸上限[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0277
WU Chuandong, CAO Dong, QI Chang, YAN Xingqing, YU Jianliang. The upper explosion limits of CH4/C2H6 and C2H6/H2O mixtures at elevated temperatures and pressures in oxygen[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0277
Citation: WU Chuandong, CAO Dong, QI Chang, YAN Xingqing, YU Jianliang. The upper explosion limits of CH4/C2H6 and C2H6/H2O mixtures at elevated temperatures and pressures in oxygen[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0277

高温高压下CH4/C2H6及C2H6/H2O在纯氧中的爆炸上限

doi: 10.11883/bzycj-2024-0277
基金项目: 国家自然科学基金(52174167,52374184)
详细信息
    作者简介:

    吴传栋(2000- ),男,硕士研究生,2668617338@qq.com

    通讯作者:

    喻健良(1963- ),男,博士,教授,yujianliang@dlut.edu.cn

  • 中图分类号: O381; X932

The upper explosion limits of CH4/C2H6 and C2H6/H2O mixtures at elevated temperatures and pressures in oxygen

  • 摘要: 采用自主搭建的5 L可燃气体爆炸特性实验平台,测量了初始温度200-270 ℃、初始压力0.4~0.6 MPa条件下,不同甲烷掺混比及水蒸气浓度的CH4/C2H6、C2H6/H2O在纯氧中的爆炸上限,揭示了初始压力、初始温度、甲烷掺混比、水蒸气浓度对乙烷爆炸上限的影响。结果表明,初始温度为200 ℃、初始压力在0.4~0.6 MPa范围时,甲烷掺混比(0~0.5)对CH4/C2H6混合气爆炸上限的影响很小;随着初始压力的提高,CH4/C2H6混合气的爆炸上限均提高,且提高幅度逐渐降低;随着水蒸气浓度的提高(0~40%),C2H6/H2O混合气的爆炸上限大致呈线性降低;随着初始压力的提高,C2H6/H2O混合气的爆炸上限均提高。初始压力为0.5 MPa时,初始温度由200 ℃升至270 ℃,纯乙烷和C2H6/H2O混合气(水蒸气浓度为40%)的爆炸上限均随温度的升高而升高,且纯乙烷爆炸上限的增幅呈上升趋势。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of experimental setup

    图  2  CH4/C2H6混合气在纯氧中的爆炸上限随甲烷掺混比的变化(初始温度为200 ℃)

    Figure  2.  The variation of the upper explosive limit of a CH4/C2H6 gas mixture in pure oxygen as a function of methane blending ratio at a constant initial temperature of 200 ℃

    图  3  CH4/C2H6混合气在纯氧中的爆炸上限随初始压力的变化(初始温度为200 ℃)

    Figure  3.  The variation of the upper explosive limit of a CH4/C2H6 gas mixture in pure oxygen as a function of initial pressure at a constant initial temperature of 200 ℃

    图  4  乙烷的压力指数随当量比的变化

    Figure  4.  Variation of pressure exponent of ethane with equivalence ratio

    图  5  C2H6/H2O混合气在纯氧中的爆炸上限随水蒸气浓度的变化(初始温度为200 ℃)

    Figure  5.  The variation of the upper explosive limit of a C2H6/H2O gas mixture in pure oxygen as a function of water vapor concentration at a constant initial temperature of 200 ℃

    图  6  爆炸上限处乙烷在乙烷和氧气中的体积占比随水蒸气浓度的变化

    Figure  6.  The variation of the volume percentage of ethane in the ethane-oxygen mixture at the upper explosive limit as a function of water vapor concentration

    图  7  拟合公式对C2H6/H2O混合物爆炸上限的预测值与本文实验值的对比

    Figure  7.  Comparison between the predicted explosion upper limit of C2H6/H2O mixture by fitting formula and the experimental values in this paper

    图  8  C2H6/H2O混合气在纯氧中的爆炸上限随初始压力的变化(初始温度为200 ℃)

    Figure  8.  The variation of the upper explosive limit of a C2H6/H2O gas mixture in pure oxygen with initial pressure at a constant initial temperature of 200 ℃

    图  9  乙烷和C2H6/H2O混合气的爆炸上限随初始温度的变化(初始压力为0.5 MPa)

    Figure  9.  The variation of the upper explosive limits of ethane and ethane/water vapor mixtures as a function of initial temperature under a constant initial pressure of 0.5 MPa

    图  10  乙烷/空气混合气的温度指数随当量比的变化(初始压力为0.5 MPa)

    Figure  10.  The variation of the temperature index of a C2H6/air mixture with equivalence ratio at a constant initial pressure of 0.5 MPa

  • [1] QI C, DING J F, WANG Y L, et al. Investigation of the upper flammability limit of ethylene/propane mixtures in air at high temperatures and pressures [J]. Energy, 2023, 281: 128114. DOI: 10.1016/j.energy.2023.128114.
    [2] QI C, WANG Y L, NING Y, et al. Investigation on the upper flammability limits of ethylene/air and propane/air mixtures at high temperature and pressure [J]. Journal of the Energy Institute, 2023, 109: 101291. DOI: 10.1016/j.joei.2023.101291.
    [3] QI C, YAN X Q, NING Y, et al. Investigation of the ignition temperature of ethane-air mixtures at elevated pressure [J]. Fuel, 2023, 350: 128815. DOI: 10.1016/j.fuel.2023.128815.
    [4] VAN DEN SCHOOR F, VERPLAETSEN F. The upper explosion limit of lower alkanes and alkenes in air at elevated pressures and temperatures [J]. Journal of Hazardous Materials, 2006, 128(1): 1–9. DOI: 10.1016/j.jhazmat.2005.06.043.
    [5] 费轶, 金满平, 张帆, 等. 初始压力对烃类物质爆炸极限的影响及其预测模型研究 [J]. 安全、健康和环境, 2013, 13(11): 31–33. DOI: 10.3969/j.issn.1672-7932.2013.11.011.

    FEI Y, JIN M P, ZHANG F, et al. The influence of initial pressure on explosion limit of hydrocarbons substance and study on its prediction model [J]. Safety, Health and Environment, 2013, 13(11): 31–33. DOI: 10.3969/j.issn.1672-7932.2013.11.011.
    [6] HUANG L, WANG Y, PEI S, et al. Effect of elevated pressure on the explosion and flammability limits of methane-air mixtures [J]. Energy, 2019, 186: 115840. DOI: 10.1016/j.energy.2019.07.170.
    [7] MENDIBURU A, CARVALHO J, JU Y. Flammability limits: a comprehensive review of theory, experiments, and estimation methods[J]. Energy and Fuels, 2023. DOI: 10.1021/acs.energyfuels.2c03598.
    [8] YU X Z, YAN X Q, JI W T, et al. Effect of super-ambient conditions on the upper explosion limit of ethane/oxygen and ethylene/oxygen mixtures [J]. Journal of Loss Prevention in the Process Industries, 2019, 59: 100–105. DOI: 10.1016/j.jlp.2019.03.009.
    [9] QI C, YU X Z, WANG Y L, et al. Investigating the effect of temperature, pressure, and inert gas on the flammability range of ethane/oxygen mixtures [J]. Fuel, 2023, 354: 129296. DOI: 10.1016/j.fuel.2023.129296.
    [10] SONG D, HU X. Effects of CO2 on the flammability limits of ethane in O2/CO2 atmosphere [J]. Fuel, 2022, 324: 124543. DOI: 10.1016/j.fuel.2022.124543.
    [11] ASTM International. Standard practice for determining limits of flammability of chemicals at elevated temperature and pressure: ASTM E918 [S]. West Conshohocken, PA: ASTM International, 2019.
    [12] British Standards Institution. Determination of explosion limits of gases and vapours at elevated pressures, elevated temperatures or with oxidizers other than air: EN 17624. [S]. London: British Standards Institution, 2022.
    [13] 中华人民共和国国家质量监督检验检疫总局. 高温高压条件下可燃气体(蒸气)爆炸极限测定方法: GB/T 42368 [S]. 中国国家标准化管理委员会, 2023.
    [14] ZHANG B, CHANG X Y, BAI C H. End-wall ignition of methane-air mixtures under the effects of CO2/Ar/N2 fluidic jets [J]. Fuel, 2020, 270. DOI: 10.1016/j.fuel.2020.117485.
    [15] LI P, LI M Z, LIU Z Y, et al. Effect of high temperature and sulfur vapor on the flammability limit of hydrogen sulfide[J]. Journal of Cleaner Production, 2022, 337. DOI: 10.1016/j.jclepro.2022.130579.
    [16] DAVIS S G, LAW C K. Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons [J]. Combustion Science and Technology, 1998, 140(1/2/3/4/5/6): 427–449. DOI: 10.1080/00102209808915781.
    [17] LEHN F, CAI L, PITSCH H. Impact of thermochemistry on optimized kinetic model predictions: auto-ignition of diethyl ether [J]. Combustion and Flame, 2019, 210: 454–466. DOI: 10.1016/j.combustflame.2019.09.011.
    [18] 喻健良, 姚福桐, 于小哲, 等. 高温和高压对乙烷在氧气中爆炸极限影响的实验研究 [J]. 爆炸与冲击, 2019, 39(12): 122101. DOI: 10.11883/bzycj-2018-0381.

    YU J L, YAO F T, YU X Z, et al. Experimental study on the influence of high temperature and high pressure on the upper limit of explosion of ethane in oxygen [J]. Explosion and Shock Waves, 2019, 39(12): 122101. DOI: 10.11883/bzycj-2018-0381.
    [19] GU X J, HAQ M Z, LAWES M, et al. Laminar burning velocity and Markstein lengths of methane-air mixtures [J]. Combustion and Flame, 2000, 121(1-2): 41–58. DOI: 10.1016/S0010-2180(99)00142-X.
    [20] Hassan MI, Aung KT, Faeth GM. Measured and predicted properties of laminar premixed methane/air flames at various pressures [J]. Combustion and flame, 1998, 115(4): 539–550. https://www.sciencedirect.com/science/article/pii/S001021809800025X. DOI: 10.1016/S0010-2180(98)00025-X.
    [21] Jomaas G, Zheng X L, Zhu D L, et al. Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2–C3 hydrocarbons at atmospheric and elevated pressures [J]. Proceedings of the Combustion Institute. International Symposium on Combustion, 2005, 30(1): 193–200. https://www.sciencedirect.com/science/article/pii/S0082078404002978. DOI: 10.1016/j.proci.2004.08.228.
    [22] Lowry W, Vries J de, Krejci M, et al. Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures[J]. Journal of engineering for gas turbines and power, 2011, 133(9). DOI: 10.1115/1.4002809.
    [23] M. Goswami, R. J. M. Bastiaans, L. P. H. de Goey, et al. Experimental and modelling study of the effect of elevated pressure on ethane and propane flames[J]. Fuel, 2016, 166: 410–418. https://www.sciencedirect.com/science/article/pii/S001623611501162X. DOI: 10.1016/j.fuel.2015.11.013.
    [24] Shang R, Zhuang Z, Niu J, et al. Experimental study on the lower flammability limit of N2 and CO2 diluted H2/CO/air mixtures at high initial pressure [J]. International Journal of Hydrogen Energy, 2023, 48(1): 393–406. DOI: 10.1016/j.ijhydene.2022.09.255.
    [25] KONDO S, TAKIZAWA K, TAKAHASHI A, et al. Extended Le Chatelier’s formula and nitrogen dilution effect on the flammability limits [J]. Fire Safety Science, 2006, 41(5): 406–417. DOI: 10.1016/j.firesaf.2006.03.002.
    [26] KONDO S, TAKIZAWA K, TAKAHASHI A, et al. Extended Le Chatelier’s formula for carbon dioxide dilution effect on flammability limits [J]. Journal of Hazardous Materials, 2006, 138(1): 1–8. DOI: 10.1016/j.jhazmat.2006.05.035.
    [27] SHINDE V, FULZELE A, KUMAR S. Investigation on laminar burning velocity measurements of premixed ethane-air mixture at higher pressure and temperature conditions [J]. Fuel, 2024, 358: 130175. DOI: 10.1016/j.fuel.2023.130175.
  • 加载中
图(10)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  14
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-06
  • 修回日期:  2025-03-20
  • 网络出版日期:  2025-04-08

目录

    /

    返回文章
    返回