摘要:
为研究锆基非晶合金破片侵彻碳纤维损伤机理和后效靶毁伤能力,采用12.7mm弹道枪开展了球型锆基非晶合金破片侵彻6mm厚碳纤维靶和后效2mm厚LY12靶组成的叠层靶和间隔靶的弹道枪试验研究,采用图像识别技术分析了后效LY12靶毁伤的面积。研究结果表明:碳纤维靶损伤面积与破片速度成正比且无明显扩孔反应,迎弹面主要为纤维剪切破坏和压缩变形损伤,背弹面则主要为拉伸撕裂破坏以及层间失效。随着速度的提高,碳纤维的剪切破坏比例逐渐增加;破片冲击相同设置靶板时,LY12靶毁伤面积随速度增加而增大,速度低于954.7m?s-1时,间隔靶后效靶LY12靶板毁伤面积小于叠层靶后效靶LY12靶毁伤面积,随着速度提高间隔靶后效LY12靶的毁伤面积快速提高,而叠合靶后效LY12靶的毁伤面积增长趋于平缓,且前者远大于后者。因此,高速撞击时,设置间隔靶对于后效毁伤更有利。
Abstract:
In order to study the damage mechanism of Zr-based amorphous alloy fragments penetrating CFRP and the destructive ability of the target material, a ballistic gun test was carried out to examine the ballistic performance of spherical Zr-based amorphous alloy. The area of the post-effect target of LY12 was analyzed using image recognition technology, with the aim of determining the extent of damage caused by the penetration of Zr-based amorphous alloy fragments through the laminated target and interstitial target, which was composed of 6mm-thick CFRP and 2mm-thick LY12. The results demonstrate that the damage area of the CFRP target is proportional to the fragmentation speed. There is no discernible reaction on the remaining portion of the target, with damage observed on the facing side, characterized by fiber shear and compression deformation, and on the backside, exhibiting tensile tearing and inter laminar failure. As the speed increases, the proportion of shear damage to the CFRP gradually increases. When a fragment impacts a target plate of the same setup, the damaged area of the LY12 target increases with the speed. When the speed is below 954.7 m·s-1, the damaged area of the interstitial target post-effect LY12 target is smaller than that of the laminated target post-effect LY12 target. With the increase of speed, the damaged area of the interstitial target post-effect LY12 target improves rapidly, while the damaged area of the laminated target post-effect LY12 target increases rapidly. The growth of the damaged area of the interstitial target post-effect LY12 target tends to slow down, and the former is much larger than the latter. Therefore, it is more favorable to set up interstitial targets for post-effect damage in high-speed impacts.