• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

锆基非晶合金破片侵彻碳纤维及后效LY12靶的试验研究

王志裕 智小琦 王洪伟 于永利

王志裕, 智小琦, 王洪伟, 于永利. 锆基非晶合金破片侵彻碳纤维及后效LY12靶的试验研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0278
引用本文: 王志裕, 智小琦, 王洪伟, 于永利. 锆基非晶合金破片侵彻碳纤维及后效LY12靶的试验研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0278
WANG Zhiyu, ZHI Xiaoqi, WANG Hongwei, YU Yongli. Experimental Study of Zr-Based Amorphous Alloy Fragmentation Penetration through CFRP and Post-Effective LY12 Targets[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0278
Citation: WANG Zhiyu, ZHI Xiaoqi, WANG Hongwei, YU Yongli. Experimental Study of Zr-Based Amorphous Alloy Fragmentation Penetration through CFRP and Post-Effective LY12 Targets[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0278

锆基非晶合金破片侵彻碳纤维及后效LY12靶的试验研究

doi: 10.11883/bzycj-2024-0278
详细信息
    作者简介:

    王志裕(1998- ),男,硕士研究生, wzy1223656840@qq.com

    通讯作者:

    智小琦(1963- ),女,博士,教授, zxq4060@sina.com

  • 中图分类号: O385

Experimental Study of Zr-Based Amorphous Alloy Fragmentation Penetration through CFRP and Post-Effective LY12 Targets

  • 摘要: 为研究锆基非晶合金破片侵彻碳纤维损伤机理和后效靶毁伤能力,采用12.7 mm弹道枪开展了球型锆基非晶合金破片侵彻6 mm厚碳纤维靶和后效2 mm厚LY12靶组成的叠合靶和间隔靶的弹道枪试验研究,采用图像识别技术分析了后效LY12靶毁伤的面积。研究结果表明:碳纤维靶毁伤面积与破片速度正相关且无明显扩孔反应,迎弹面主要为纤维剪切破坏和压缩变形毁伤,背弹面则主要为拉伸撕裂破坏以及层间失效。破片冲击相同设置靶板时,LY12靶毁伤面积随速度增加而增大,速度低于954.7 m/s时,间隔靶后效靶LY12靶板毁伤面积小于叠合靶后效靶LY12靶毁伤面积,随着速度提高间隔靶后效LY12靶的毁伤面积快速提高,而叠合靶后效LY12靶的毁伤面积增长趋于平缓,且前者远大于后者。因此,高速撞击时,设置间隔靶对于后效毁伤更有利。
  • 图  1  试验所用破片实物图

    Figure  1.  Tested fragments

    图  2  两种靶板的装置布置示意图

    Figure  2.  Schematic of device arrangement of two target plates

    图  3  试验测试系统示意图

    Figure  3.  Schematic diagram of pilot test system

    图  4  碳纤维靶板的典型毁伤形貌

    Figure  4.  Typical damage morphology of CFRP target plate

    图  5  叠合靶LY12靶板的毁伤形貌

    Figure  5.  The damaged appearance of LY12 target plate with laminated target

    图  6  剩余破片回收情况

    Figure  6.  Recovery of remaining fragments

    图  7  间隔靶碳纤维靶毁伤情况

    Figure  7.  Carbon fiber damage in interstitial target

    图  8  间隔靶LY12靶板的毁伤形貌

    Figure  8.  The damage morphology of interstitial target LY12 target

    图  9  剩余破片回收情况

    Figure  9.  Recovery of remaining fragments

    图  10  不同设置靶板的典型摄像帧

    Figure  10.  Typical camera frames for different target plate settings

    图  11  两种设置靶中撞击速度与碳纤维靶毁伤面积关系图

    Figure  11.  Plot of impact velocity versus area of carbon fibre target damage for two target settings

    图  12  二值化结果

    Figure  12.  Binarization result

    图  13  破片速度和LY12靶毁伤面积曲线拟合

    Figure  13.  Fitting of fragmentation velocity and LY12 target damage area curves

    表  1  试验结果

    Table  1.   Experimental results

    类型 v/(m·s−1) 穿透碳纤维靶 穿透LY12 靶 类型 v/(m·s−1) 穿透碳纤维靶 穿透LY12 靶
    叠合靶 1169.2 间隔靶 1148.7
    1049.4 1103.9
    926.9 936.6
    858.1 862.9
    755.6 807.2
    734.1 767.5
    698.3 695.3
    545.4 619.3
    420.8 572.2
    下载: 导出CSV

    表  2  不同设置靶板中LY12靶毁伤面积

    Table  2.   Destruction area of LY12 targets at different set

    类型 初始速度/(m·s−1) LY12毁伤面积/mm2 类型 初始速度/(m·s−1) LY12毁伤面积/mm2
    叠合靶 1169.2 317.4 间隔靶 1148.7 508.2
    1049.4 310.6 1103.9 439.2
    933.6 290.9 936.9 312.4
    858.1 269.3 862.9 206.9
    734.1 377.5 767.5 176.6
    698.3 156.6 695.3 150.0
    545.4 75.3 572.2 80.7
    420.8 0
    下载: 导出CSV
  • [1] 张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.

    ZHANG X F, ZHAO X N. Review on multifunctional energetic structural materials [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.
    [2] XU F Y, ZHENG Y F, YU Q B, et al. Experimental study on penetration behavior of reactive material projectile impacting aluminum plate [J]. International Journal of Impact Engineering, 2016, 95: 125–132. DOI: 10.1016/j.ijimpeng.2016.05.007.
    [3] WALTERS W P, KECSKES L J, PRITCHETT J E. Investigation of a bulk metallic glass as a shaped charge liner material: ARL-TR 3864 [R]. Aberdeen Proving Ground: Army Research Laboratory, 2006.
    [4] CONNER R D, DANDLIKER R B, SCRUGGS V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. International Journal of Impact Engineering, 2000, 24(5): 435–444. DOI: 10.1016/S0734-743X(99)00176-1.
    [5] 张云峰, 罗兴柏, 刘国庆, 等. W/ZrNiAlCu亚稳态合金复合材料破片对RHA靶的侵彻释能特性 [J]. 爆炸与冲击, 2020, 40(2): 023301. DOI: 10.11883/bzycj-2019-0065.

    ZHANG Y F, LUO X B, LIU G Q, et al. Penetration and energy release effect of W/ZrNiAlCu metastable reactive alloy composite rragment against RHA target [J]. Explosion and Shock Waves, 2020, 40(2): 023301. DOI: 10.11883/bzycj-2019-0065.
    [6] 尚春明, 施冬梅, 张云峰, 等. Zr基非晶合金的燃烧释能特性 [J]. 含能材料, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219.

    SHANG C M, SHI D M, ZHANG Y F, et al. Combustion and energy release characteristics of Zr-based amorphous alloys [J]. Chinese Journal of Energetic Materials, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219.
    [7] 王佳敏, 张先锋, 查旭, 等. ZrTiCuNiBe非晶合金及其钨丝增强复合材料的冲击释能特性研究 [J]. 北京理工大学学报, 2023, 43(10): 1036–1046. DOI: 10.15918/j.tbit1001-0645.2023.084.

    WANG J M, ZHANG X F, CHA X, et al. Study on impact energy release characteristics of ZrTiCuNiBe amorphous alloy and its tungsten-fiber reinforced composites [J]. Transactions of Beijing Institute of Technology, 2023, 43(10): 1036–1046. DOI: 10.15918/j.tbit1001-0645.2023.084.
    [8] 杨林, 于述贤, 范群波. Zr77.1Cu13Ni9.9非晶合金破片侵彻LY12铝合金及TC4钛合金靶板毁伤后效及机理对比研究 [J]. 北京理工大学学报, 2023, 43(4): 417–428. DOI: 10.15918/j.tbit1001-0645.2022.092.

    YANG L, YU S X, FAN Q B. Damage effect and mechanism of Zr77.1Cu13Ni9.9 bulk metallic glasses fragment penetrating LY12 aluminum alloy and TC4 titanium alloy target plate [J]. Transactions of Beijing Institute of Technology, 2023, 43(4): 417–428. DOI: 10.15918/j.tbit1001-0645.2022.092.
    [9] CHEN X, DU C X, CHENG C, et al. Impact-induced chemical reaction behavior of ZrTiNiCuBe bulk metallic glass fragments impacting on thin plates [J]. Materials and Technology, 2018, 52(6): 737–743. DOI: 10.17222/mit.2018.089.
    [10] 张玉令, 施冬梅, 张云峰, 等. W骨架/Zr基非晶合金复合材料破片侵彻能力与后效研究 [J]. 爆炸与冲击, 2021, 41(5): 053301. DOI: 10.11883/bzycj-2020-0063.

    ZHANG Y L, SHI D M, ZHANG Y F, et al. Investigation of penetration ability and aftereffect of Zr-based metallic glass reinforced porous W matrix composite fragments [J]. Explosion and Shock Waves, 2021, 41(5): 053301. DOI: 10.11883/bzycj-2020-0063.
    [11] 李建利, 赵帆, 张元, 等. 碳纤维及其复合材料在军工领域的应用 [J]. 合成纤维, 2014, 43(3): 33–35,40. DOI: 10.16090/j.cnki.hcxw.2014.03.007.

    LI J L, ZHAO F, ZHANG Y, et al. Application of carbon fiber and its composites in military industry [J]. Synthetic Fiber in China, 2014, 43(3): 33–35,40. DOI: 10.16090/j.cnki.hcxw.2014.03.007.
    [12] 黄亿洲, 王志瑾, 刘格菲. 碳纤维增强复合材料在航空航天领域的应用 [J]. 西安航空学院学报, 2021, 39(5): 44–51. DOI: 10.3969/j.issn.1008-9233.2021.05.009.

    HUANG Y Z, WANG Z J, LIU G F. Application of carbon fiber reinforced composite in aerospace [J]. Journal of Xi'an Aeronautical University, 2021, 39(5): 44–51. DOI: 10.3969/j.issn.1008-9233.2021.05.009.
    [13] 李健, 洪术华, 沈金平. 复合材料在海洋船舶中的应用 [J]. 机电设备, 2019, 36(4): 57–59. DOI: 10.16443/j.cnki.31-1420.2019.04.013.

    LI J, HONG S H, SHEN J P. Applications of composite materials on marine ships [J]. Mechanical and Electrical Equipment, 2019, 36(4): 57–59. DOI: 10.16443/j.cnki.31-1420.2019.04.013.
    [14] 周杰, 何勇, 何源, 等. Al/PTFE/W反应材料的准静态压缩性能与冲击释能特性 [J]. 含能材料, 2017, 25(11): 903–912. DOI: 10.11943/j.issn.1006-9941.2017.11.004.

    ZHOU Jie, HE Yong, HE Yuan, et al. Quasi-static compression properties and impact energy release characteristics of Al/PTFE/W reactive materials [J]. Chinese Journal of Energetic Materials, 2017, 25(11): 903–912. DOI: 10.11943/j.issn.1006-9941.2017.11.004.
    [15] 罗普光, 毛亮, 魏晨杨, 等. 锆基非晶活性材料动态力学性能及本构关系 [J]. 含能材料, 2021, 29(12): 1176–1181. DOI: 10.11943/CJEM2021068.

    LUO P G, MAO L, WEI C Y, et al. Dynamic mechanical properties and Constitutive relations of Zr-based amorphous reactive material [J]. Chinese Journal of Energetic Materials, 2021, 29(12): 1176–1181. DOI: 10.11943/CJEM2021068.
    [16] 侯先苇, 张先锋, 熊玮, 等. 活性无序合金冲击的释能特性及在毁伤元中应用研究进展 [J]. 爆炸与冲击, 2023, 43(9): 091401. DOI: 10.11883/bzycj-2023-0189.

    HOU X W, ZHANG X F, XIONG W, et al. Research progress on impact energy release characteristics of reactive disordered alloy and its application in kill elements [J]. Explosion and Shock Waves, 2023, 43(9): 091401. DOI: 10.11883/bzycj-2023-0189.
    [17] 杜宁, 张先锋, 熊玮, 等. 爆炸驱动典型活性材料能量释放特性研究 [J]. 爆炸与冲击, 2020, 40(4): 042301. DOI: 10.11883/bzycj-2019-0239.

    DU N, ZHANG X F, XIONG W, et al. Energy-release characteristics of typical reactive materials under explosive loading [J]. Explosion and Shock Waves, 2020, 40(4): 042301. DOI: 10.11883/bzycj-2019-0239.
    [18] 王震鸣. 复合材料结构力学 [J]. 力学进展, 1986, 16(2): 202-209. DOI: 10.6052/1000-0992-1986-2-j1986-024.

    WANG Z M. The mechanics of composite structures [J]. Advances in Mechanics, 2012, 16(2): 202-209. DOI: 10.6052/1000-0992-1986-2-j1986-024.
    [19] 贾杰, 智小琦, 郝春杰, 等. Zr基非晶破片对碳纤维复合靶及后效铝靶的侵彻试验研究 [J]. 高压物理学报, 2024, 38(2): 025101. DOI: 10.11858/gywlxb.20230764.

    JIA J, ZHI X Q, HAO C J, et al. Experimental study on the penetration of Zr-based amorphous fragment into carbon fiber composite target and post-effect aluminum target [J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 025101. DOI: 10.11858/gywlxb.20230764.
    [20] 罗锐恒, 智小琦, 张姚瑶. Zr基非晶合金反应材料的力学性能与冲击烧蚀特性 [J]. 金属功能材料, 2023, 30(3): 83–92. DOI: 10.13228/j.boyuan.issn1005-8192.20230037.

    LUO R H, ZHI X Q, ZHANG Y Y. Mechanical properties and impact ablation characteristics of Zr-based amorphous alloy reactive materials [J]. Metallic Functional Materials, 2023, 30(3): 83–92. DOI: 10.13228/j.boyuan.issn1005-8192.20230037.
    [21] AKTAŞ M, KARAKUZU R, ARMAN Y. Compression-after impact behavior of laminated composite plates subjected to low velocity impact in high temperatures [J]. Composite Structures, 2009, 89(1): 77–82. DOI: 10.1016/j.compstruct.2008.07.002.
    [22] ZHANG N, ZHOU G M, GUO X M, et al. High-velocity impact damage and compression after impact behavior of carbon fiber composite laminates: experimental study [J]. International Journal of Impact Engineering, 2023, 181: 104749. DOI: 10.1016/j.ijimpeng.2023.104749.
    [23] THORSSON S I, SRINGERI S P, WAAS A M, et al. Experimental investigation of composite laminates subject to low-velocity edge-on impact and compression after impact [J]. Composite Structures, 2018, 186: 335–346. DOI: 10.1016/j.compstruct.2017.11.084.
    [24] KIM Y A, WOO K, CHO H, et al. High-velocity impact damage behavior of carbon/epoxy composite laminates [J]. International Journal of Aeronautical and Space Sciences, 2015, 16(2): 190–205. DOI: 10.5139/IJASS.2015.16.2.190.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  36
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-11
  • 网络出版日期:  2024-11-20

目录

    /

    返回文章
    返回