• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

掺氢比和CO2对掺氢天然气爆炸特性的影响

罗振敏 南凡 孙亚利 程方明 苏彬 李睿康 王涛

罗振敏, 南凡, 孙亚利, 程方明, 苏彬, 李睿康, 王涛. 掺氢比和CO2对掺氢天然气爆炸特性的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0282
引用本文: 罗振敏, 南凡, 孙亚利, 程方明, 苏彬, 李睿康, 王涛. 掺氢比和CO2对掺氢天然气爆炸特性的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0282
LUO Zhenmin, NAN Fan, SUN Yali, CHENG Fangming, SU Bin, LI Ruikang, WANG Tao. Effects of hydrogen ratio and CO2 on the explosion characteristics of hydrogen-doped natural gas[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0282
Citation: LUO Zhenmin, NAN Fan, SUN Yali, CHENG Fangming, SU Bin, LI Ruikang, WANG Tao. Effects of hydrogen ratio and CO2 on the explosion characteristics of hydrogen-doped natural gas[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0282

掺氢比和CO2对掺氢天然气爆炸特性的影响

doi: 10.11883/bzycj-2024-0282
基金项目: 西安科技大学优秀博士学位论文培育计划项目;陕西省教育厅基金项目(23JP092);国家自然科学基金(52174200)
详细信息
    作者简介:

    罗振敏(1976- ),女,博士,教授,zmluo@xust,edu.cn

    通讯作者:

    南 凡(1993- ),男,博士研究生,1538478605@qq.com

  • 中图分类号: X932

Effects of hydrogen ratio and CO2 on the explosion characteristics of hydrogen-doped natural gas

  • 摘要: 天然气掺氢技术已被逐渐运用于管道运输,但掺氢天然气易发生泄漏爆炸事故。文中采用20 L球形装置研究了掺氢比和添加CO2对掺氢天然气爆炸压力和火焰传播特性的影响。结果表明:掺氢比对掺氢天然气爆炸压力和火焰传播速度有促进作用。随着掺氢比增加,最大爆炸压力逐渐上升,快速燃爆时间和持续燃烧时间减小,最大爆炸压力上升速率和火焰传播速度在掺氢比小于0.5时逐渐上升,当掺氢比大于0.5时,最大爆炸压力上升速率和火焰传播速度快速上升。加入CO2对混合气体爆炸压力和火焰传播速度有抑制作用,但对高掺氢比的压力参数抑制效果较差。通过反应动力学分析可知,随着掺氢比增大,火焰层流燃烧速度和绝热火焰温度逐渐上升,活性自由基摩尔分数和产物生成速率明显上升,并且掺混氢气改变了甲烷的反应路径,当掺氢比大于0.5,反应R84、R46和R3进入了前十步反应中,产生了H和OH自由基,促进了反应。而CO2能降低混合气体的层流燃烧速率、绝热火焰温度、活性自由基摩尔分数以及产物生成速率,但添加CO2不改变甲烷的反应路径。
  • 图  1  实验装置示意图

    Figure  1.  Schematic of experimental device

    图  2  爆燃效应表征参数提取

    Figure  2.  Extraction of characteristic parameters of deflagration

    图  3  掺氢比和CO2对氢气/甲烷爆炸压力参数的影响

    Figure  3.  Effects of hydrogen doping ratio and CO2 on hydrogen/methane explosion pressure parameters

    图  4  掺氢比对氢气/甲烷爆炸火焰传播过程的影响

    Figure  4.  Effect of hydrogen doping ratio on hydrogen/methane explosion flame propagation process

    图  5  CO2对氢气/甲烷爆炸火焰传播过程的影响(X=0.5)

    Figure  5.  Effect of CO2 on the explosion flame propagation process of hydrogen/methane(X=0.5)

    图  6  掺氢比和CO2对氢气/甲烷火焰传播速度的影响

    Figure  6.  Effects of hydrogen ratio and CO2 on hydrogen/methane flame propagation speed

    图  7  掺氢比和CO2对氢气/甲烷球形火焰层流燃烧速度的影响

    Figure  7.  Effects of hydrogen ratio and CO2 on laminar burning velocity of hydrogen/methane spherical flame

    图  8  掺氢比和CO2对氢气/甲烷绝热火焰温度的影响

    Figure  8.  Effects of hydrogen ratio and CO2 on hydrogen/methane adiabatic flame temperature

    图  9  掺氢比和CO2对H、O和OH自由基摩尔分数的影响

    Figure  9.  Effects of hydrogen ratio and CO2 on the mole fraction of H, O and OH free radicals

    图  10  层流燃烧速度与H自由基摩尔分数的关系

    Figure  10.  The relationship between laminar burning velocity and H radical mole fraction

    图  11  氢气/甲烷爆炸H自由基的生成速率(XH2=0.5)

    Figure  11.  Production rate of H radical in hydrogen/methane explosion (XH2=0.5)

    图  12  氢气/甲烷火焰层流燃烧速度敏感性分析

    Figure  12.  Sensitivity analysis of laminar burning velocity in hydrogen/methane flame

    表  1  掺氢比以及氢气和甲烷的体积分数

    Table  1.   Hydrogen doping ratio and volume fractions of hydrogen and methane

    掺氢比XH2体积分数/%CH4体积分数/%
    009.50
    0.11.029.18
    0.33.368.36
    0.57.197.19
    0.712.675.43
    0.921.982.44
    129.590
    下载: 导出CSV
  • [1] 李敬法, 苏越, 张衡, 等. 掺氢天然气管道输送研究进展 [J]. 天然气工业, 2021, 41(04): 137–152. DOI: 10.3787/j issn.1000-0976.2021.04.015.

    LI J F, SU Y, ZHANG H , et al. Research progresses on pipeline transportation of hydrogen-blended natural gas [J]. Natural Gas Industry, 2021, 41(04): 137–152. DOI: 10.3787/j issn.1000-0976.2021.04.015.
    [2] ZHOU S Y, XIAO J, LUO Z M, et al. Analysis of spontaneous ignition of hydrogen-enriched methane in a rectangular tube [J]. Proceedings of the Combustion Institute, 2024, 40(1-4): 105681. DOI: 10.1016/j.proci.2024.105681.
    [3] QU J, WANG R, DENG J, et al. Synergistic inhibition characteristics and kinetics of hydrogen explosion by two-phase suppressant N2-KHCO3 [J]. Journal of Loss Prevention in the Process Industries, 2024, 92: 105487. DOI: 10.1016/j.jlp.2024.105487.
    [4] WANG T, DONG Z, YANG P, et al. Phase change materials as hydrogen explosion suppressants: An experimental and kinetic investigation [J]. Chemical Engineering Journal, 2024, 500: 156996. DOI: 10.1016/j.cej.2024.156996.
    [5] MOLNARNE M, SCHROEDER V. Hazardous properties of hydrogen and hydrogen containing fuel gases [J]. Process Safety and Environmental Protection, 2019, 130: 1–5. DOI: 10.1016/j.psep.2019.07.012.
    [6] SHEN X B, XIU G L, WU S Z. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition [J]. Applied Thermal Engineering, 2017, 120: 741–747. DOI: 10.1016/j.applthermaleng.2017.04.040.
    [7] SALZANO E, CAMMAROTA F, BENEDETTO A D, et al. Explosion behavior of hydrogen-methane/air mixtures [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(3): 443–447. DOI: 10.1016/j.jlp.2011.11.010.
    [8] 董冰岩, 查裕学, 邹颖, 等. 球形压力容器中甲烷-氢气-空气爆炸过程数值模拟及实验研究 [J]. 中国安全生产科学技术, 2023, 19(03): 157–163. DOI: 10.11731/j.issn.1673-193x.2023.03.023.

    DONG B Y, CHA Y X, ZOU Y, et al. Numerical simulation and experimental study of methane-hydrogen-air explosion process in spherical pressure vessel [J]. Journal of Safety Science and Technology, 2023, 19(03): 157–163. DOI: 10.11731/j.issn.1673-193x.2023.03.023.
    [9] MA Q J, ZHANG Q, CHEN J C, et al. Effects of hydrogen on combustion characteristics of methane in air [J]. International Journal of Hydrogen Energy, 2014, 39(21): 11291–11298. DOI: 10.1016/j.ijhydene.2014.05.030.
    [10] HUANG Y, CHEN J, ZHANG Q, et al. Effects of hydrogen addition on the confined and vented explosion behavior of methane in air [J]. Journal of Loss Prevention in the Process Industries, 2014, 27(1): 65–73. DOI: 10.1016/j.jlp.2013.11.007.
    [11] BOURAS F, ATTIA M E H, KHALDI F, et al. Control of methane flame properties by hydrogen fuel addition: Application to power plant combustion chamber [J]. International Journal of Hydrogen Energy, 2017, 42(13): 8932–8939. DOI: 10.1016/j.ijhydene.2016.11.146.
    [12] 刘振翼, 李嘉璐, 李鹏亮, 等. 高温高压下N2和CO2对CH4/C2H6/C3H8混合气抑爆效果研究 [J]. 北京理工大学学报, 2023, 43(02): 111–117. DOI: 10.15918/j.tbit1001-0645.2022.048.

    LIU Z Y , LI J L, LI P L, et al. Study on the explosion suppression effect of N2 and CO2 on CH4/C2H6/C3H8 mixtures at high temperature and high pressure [J]. Transactions of Beijing Institute of Technology, 2023, 43(02): 111–117. DOI: 10.15918/j.tbit1001-0645.2022.048.
    [13] LUO Z, WEI C, WANG T, et al. Effects of N2 and CO2 dilution on the explosion behavior of liquefied petroleum gas (LPG)-air mixtures [J]. Journal of Hazardous Materials, 2021, 403: 123843. DOI: 10.1016/j.jhazmat.2020.123843.
    [14] CHEN D, YAO Y, DENG Y. The influence of N2/CO2 blends on the explosion characteristics of stoichiometric methane –air mixture [J]. Process Safety Progress, 2018. DOI: 10.1002/prs.12015.
    [15] MITU M, PRODAN M, GIURCAN V, et al. Influence of inert gas addition on propagation indices of methane–air deflagrations [J]. Process Safety and Environmental Protection, 2016, 102: 513–522. DOI: 10.1016/j.psep.2016.05.007.
    [16] LU C, LIU Y, WANG H B, et al. Experimental study of the effects of CO2/H2 on the characteristic features of methane/air bursts. [J]. Journal of Safety and Environment, 2018, 18(05): 1788–1795. DOI: 10.13637/j.issn.1009-6094.2018.05.024.
    [17] HU E, JIANG X, HUANG Z, et al. Numerical study on the effects of diluents on the laminar burning velocity of methane−air mixtures [J]. Energy and fuels., 2012, 26: 4242–4252. DOI: 10.1021/ef300535s.
    [18] SIOU Y W, NUNG K L, CHI M S. Effects of flammability characteristics of methane with three inert gases [J]. Process Safety Progress, 2010, 29(4): 349–352. DOI: 10.1002/prs.10411.
    [19] LIANG Y, ZENG W, HU E. Experimental study of the effect of nitrogen addition on gas explosion [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 1–9. DOI: 10.1016/j.jlp.2012.08.002.
    [20] LI M H, XU J C, WANG C J, et al. Thermal and kinetics mechanism of explosion mitigation of methane-air mixture by N2/CO2 in a closed compartment [J]. Fuel, 2019, 255. DOI: 10.1016/j.fuel.2019.115747.
    [21] BENEDETTO A D, SARLI V D, SALZANO E, et al. Explosion behavior of CH4/O2/N2/CO2 and H2/O2/N2/CO2 mixtures [J]. International Journal of Hydrogen Energy, 2009. DOI: 10.1016/j.ijhydene.2009.05.120.
    [22] WEI H, XU Z, ZHOU L, et al. Effect of hydrogen-air mixture diluted with argon/nitrogen/carbon dioxide on combustion processes in confined space [J]. International Journal of Hydrogen Energy, 2018, 43(31): 14798–14805. DOI: 10.1016/j.ijhydene.2018.06.038.
    [23] LI Y C, BI M S, HUANG L, et al. Hydrogen cloud explosion evaluation under inert gas atmosphere [J]. Fuel Processing Technology, 2018, 180: 96–104. DOI: 10.1016/j.fuproc.2018.08.015.
    [24] LI Y C, BI M S, YAN C C, et al. Inerting effect of carbon dioxide on confined hydrogen explosion [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22620–22631. DOI: 10.1016/j.ijhydene.2019.04.181.
    [25] YAN C C, BI M S, LI Y C, et al. Effects of nitrogen and carbon dioxide on hydrogen explosion behaviors near suppression limit [J]. Journal of Loss Prevention in the Process Industries, 2020, 67: 104228. DOI: 10.1016/j.jlp.2020.104228.
    [26] BASCO A, CAMMAROTA F, SARLI V D, et al. Theoretical analysis of anomalous explosion behavior for H2/CO/O2/N2 and CH4/O2/N2/CO2 mixtures in the light of combustion-induced rapid phase transition [J]. International Journal of Hydrogen Energy, 2015, 40(25): 8239–8247. DOI: 10.1016/j.ijhydene.2015.04.092.
    [27] QIAO L, GU Y, DAHM W J A, et al. Near-limit laminar burning velocities of microgravity premixed hydrogen flames with chemically-passive fire suppressants [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2701–2709. DOI: 10.1016/j.proci.2006.07.012.
    [28] QIAO L, KIM C H, FAETH G M. Suppression effects of diluents on laminar premixed hydrogen/oxygen/nitrogen flames [J]. Combustion and Flame, 2005, 143(1-2): 79–96. DOI: 10.1016/j.combustflame.2005.05.004.
    [29] HU E J, HUANG Z H, HE J J, et al. Measurement of laminar burning velocities and analysis of flame stabilities for hydrogen-air-diluent premixed mixtures [J]. Chinese Science Bulletin, 2009, 54(5): 846–857. DOI: 10.1007/s11434-008-0584-y.
    [30] QIAO L, GU Y, DAHM W, et al. A study of the effects of diluents on near-limit H2-air flames in microgravity at normal and reduced pressures [J]. Combustion and Flame, 2007, 151(1-2): 196–208. DOI: 10.1016/j.combustflame.2007.06.013.
    [31] AZATYAN V V, SHEBEKO Y N, SHEBEKO A Y. A numerical modelling of an influence of CH4, N2, CO2 and steam on a laminar burning velocity of hydrogen in air [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(2): 331–336. DOI: 10.1016/j.jlp.2009.12.002.
    [32] 程方明, 葛汉漳, 邓军, 等. 金属丝网位置对氢气/甲烷/空气火焰传播特性的影响 [J]. 安全与环境学报, 2024, 24(07): 2593–2600. DOI: 10.13637/j.issn.1009-6094.2023.1586.

    CHENG F M, GE H Z, DENG J, et al. Effect of wire mesh position on the propagation characteristics of hydrogen/methane/air premixed flames in pipelines [J]. Journal of Safety and Environment, 2024, 24(07): 2593–2600. DOI: 10.13637/j.issn.1009-6094.2023.1586.
    [33] 程方明, 苟籽妍, 罗振敏, 等. 掺氢比例对金属丝网阻抑掺氢甲烷燃烧火焰传播的影响 [J]. 爆炸与冲击, 2024, 44(04): 171–180. DOI: 10.11883/bzycj-2023-0295.

    CHENG F M, GOU Z Y, LUO Z M, et al. Effect of hydrogen ratio on inhibition property of wire mesh to propagation of the flame by methane premixed with hydrogen. [J]. Explosion and Shock Waves, 2024, 44(04): 171–180. DOI: 10.11883/bzycj-2023-0295.
    [34] 唐毅, 员亚龙, 李开源, 等. 球形非金属材料对甲烷掺氢爆炸抑制机理研究 [J]. 高压物理学报, 2022, 36(06): 182–189. DOI: 10.11858/gywlxb.20220609.

    TANG Y, YUAN Y L, LI K Y, et al. Explosion suppression performance of spherical non-metallic materials for methane hydrogen-doped syngas explosion. [J]. Chinese Journal of High Pressure Physics, 2022, 36(06): 182–189. DOI: 10.11858/gywlxb.20220609.
    [35] 陈晓坤, 马赛燕, 程方明, 等. 半封闭管道内CO2对掺氢甲烷燃爆特性的影响 [J]. 安全与环境学报, 2023, 23(12): 4279–4286. DOI: 10.13637/j.issn.1009-6094.2022.2087.

    CHEN X K, MA S Y, CHENG F M, et al. Influence of CO2 on the combustion and explosion characteristics of hydrogen-doped methane in a semi-closed pipe. [J]. Journal of Safety and Environment, 2023, 23(12): 4279–4286. DOI: 10.13637/j.issn.1009-6094.2022.2087.
    [36] SMITH G P, GOLDEN D M, FRENKLACH M, et al. Available from: http://www.me.Berke-ley.edu/grimech/.
    [37] LIAO S Y, JIANG D M, CHENG Q. Determination of laminar burning velocities for natural gas [J]. Fuel, 2004, 83(9): 1247–1250. DOI: 10.1016/j.fuel.2003.12.001.
    [38] LAMOUREUX N, DJEBAILI-CHAUMEIX N, PAILLARD C-E. Laminar flame velocity determination for H2–air–He– CO2 mixtures using the spherical bomb method [J]. Experimental Thermal and Fluid Science, 2003, 27(4): 385–393. DOI: 10.1016/S0894-1777(02)00243-1.
    [39] 胡二江, 何佳佳, 黄佐华, 等. 氢气-空气-稀释气混合气层流燃烧速度的测定和火焰稳定性分析 [J]. 科学通报, 2008(20): 2514–2525. DOI: 10.1360/csb2008-53-20-2514.

    HU E J, HE J J, HUANG Z H, et al. Determination of the laminar burning velocity and flame stability analysis of hydr ogen-air-diluted gas mixtures [J]. Chinese Science Bulletin, 2008(20): 2514–2525. DOI: 10.1360/csb2008-53-20-2514.
    [40] WU F, JOMAAS G, LAW C K. An experimental investigation on self-acceleration of cellular spherical flames [J]. Proceedings of the Combustion Institute, 2013, 34(1): 937–945. DOI: 10.1016/j.proci.2012.05.0600.
    [41] WANG Z H, WANG S X, WHIDDON R, et al. Effect of hydrogen addition on laminar burning velocity of CH4/DME mixtures by heat flux method and kinetic modeling [J]. Fuel, 2018, 232(15): 729–742. DOI: 10.1016/j.fuel.2018.05.146.
    [42] LIU G Y, ZHOU J H, WANG Z H, et al. Adiabatic laminar burning velocities of C3H8-O2-CO2 and C3H8-O2-N2 mixtures at ambient conditions-PART II: Mechanistic interpretation [J]. Fuel, 2020, 276: 117946. DOI: 10.1016/j.fuel.2020.117946.
    [43] SU B, LUO Z M, DENG J, et al. Comparative study on methane/air deflagration with hydrogen and ethane additions: Investigation from macro and micro perspectives [J]. Process Safety and Environmental Protection, 2023, 174: 561–573. DOI: 10.1016/j.psep.2023.04.030.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  17
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-11
  • 修回日期:  2024-12-29
  • 网络出版日期:  2025-01-01

目录

    /

    返回文章
    返回