• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

火灾下钢-混凝土组合墙抗爆机理分析与变形预测

赵子诚 赵晖 李世强 马小敏

赵子诚, 赵晖, 李世强, 马小敏. 火灾下钢-混凝土组合墙抗爆机理分析与变形预测[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0283
引用本文: 赵子诚, 赵晖, 李世强, 马小敏. 火灾下钢-混凝土组合墙抗爆机理分析与变形预测[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0283
ZHAO Zicheng, ZHAO Hui, LI Shiqiang, MA Xiaomin. Mechanism analysis and deformation prediction of steel-concrete-steel composite walls under coupled fire exposure and explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0283
Citation: ZHAO Zicheng, ZHAO Hui, LI Shiqiang, MA Xiaomin. Mechanism analysis and deformation prediction of steel-concrete-steel composite walls under coupled fire exposure and explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0283

火灾下钢-混凝土组合墙抗爆机理分析与变形预测

doi: 10.11883/bzycj-2024-0283
基金项目: 国家自然科学基金(12202303,12072219);山西省重点国别科技合作项目(202204041101010)
详细信息
    作者简介:

    赵子诚(2001- ),男,硕士研究生,zhaozicheng4186@163.com

    通讯作者:

    马小敏(1988- ),男,博士,讲师,maxiaomin@tyut.edu.cn

  • 中图分类号: O389

Mechanism analysis and deformation prediction of steel-concrete-steel composite walls under coupled fire exposure and explosion

  • 摘要: 双钢板-混凝土组合墙(Steel-concrete-steel composite wall,SCS墙)已在超高层建筑、核电站等重要工程中得到应用,鉴于火灾与爆炸通常同时发生,而高温会显著降低钢材和混凝土的力学性能,从而导致结构构件的抗爆性能严重退化。为此,采用ABAQUS有限元软件,建立了120个火灾-爆炸耦合作用下SCS墙分析模型。首先,基于已有的火灾下耐火极限试验和常温下爆炸试验对有限元模型进行验证;其次,分析了火灾-爆炸耦合作用下SCS墙工作机理,重点研究了受火时间、爆炸当量、含钢率、材料强度、钢筋连接间距与轴压比对抗爆性能的影响规律;最后,基于等效单自由度模型提出了火灾-爆炸耦合作用下SCS墙跨中最大挠度的预测公式。结果表明:SCS墙在火灾与爆炸耦合作用下主要表现为整体受弯破坏;随着受火时间的增加,受火面钢板耗能占比降低,背火面钢板的塑性变形逐渐成为墙体的主要耗能机制;受火时间、爆炸当量与钢材强度对火灾下SCS墙的抗爆性能影响明显,而混凝土强度影响较小;基于等效单自由度模型提出的计算公式可较好预测火灾与爆炸耦合作用下SCS墙的跨中最大挠度。
  • 图  1  SCS墙构造示意图

    Figure  1.  Schematic diagram of SCS walls

    图  2  试件命名规则

    Figure  2.  Naming rule of specimens

    图  3  火灾-爆炸耦合分析流程

    Figure  3.  Analytical process of coupled fire exposure and explosion

    图  4  有限元模型

    Figure  4.  Finite element model

    图  5  爆炸试验布置图[2, 19]

    Figure  5.  Layout diagram of explosion tests[2, 19]

    图  6  试验[2, 17-19]与模拟结果对比

    Figure  6.  Comparison between experimental[2, 17-19] and simulated results

    图  7  试件破坏模式对比

    Figure  7.  Comparison of the failure modes of specimens

    图  8  不同受火时间温度场的分布云图

    Figure  8.  Temperature distribution contours for different fire durations

    图  9  温度时程曲线

    Figure  9.  Time history curves of temperature

    图  10  速度与挠度时程曲线

    Figure  10.  Time history curves of velocity and deflection

    图  11  混凝土的等效塑性应变

    Figure  11.  Equivalent plastic strain in concrete

    图  12  混凝土最大主塑性应变

    Figure  12.  Maximum plastic strain in concrete

    图  13  钢板与栓钉的纵向应力分布

    Figure  13.  Longitudinal stress distribution of steel plate and studs

    图  14  跨中混凝土最大主塑性应变

    Figure  14.  Maximum plastic strain at the mid-span of concrete

    图  15  各部件耗能曲线

    Figure  15.  Energy dissipation curves of each component

    图  16  各部件耗能占比

    Figure  16.  Energy consumption ratio of each component

    图  17  SCS墙的跨中峰值挠度随受火时间的变化

    Figure  17.  Variation of mid-span peak deflection of SCS wall with fire duration

    图  18  SCS墙的跨中峰值挠度随爆炸当量的变化

    Figure  18.  Variation of mid-span peak deflection of SCS wall with explosion charge

    图  19  SCS墙的跨中峰值挠度随轴压比的变化

    Figure  19.  Variation of mid-span peak deflection of SCS wall with axial compression ratio

    图  20  SCS墙的跨中峰值挠度随材料强度的变化

    Figure  20.  Variation of mid-span peak deflection of SCS wall with material strengths

    图  21  SCS墙的跨中峰值挠度随对拉钢筋间距的变化

    Figure  21.  Variation of mid-span peak deflection of SCS wall with tie bar spacing

    图  22  SCS墙的跨中峰值挠度随含钢率的变化

    Figure  22.  Variation of mid-span peak deflection of SCS wall with steel ratio

    图  23  跨中最大挠度的计算流程图

    Figure  23.  Calculation flow chart of maximum mid-span deflection

    图  24  温度分层

    Figure  24.  Temperature layer division

    图  25  有限元与公式计算的温度对比

    Figure  25.  Comparison of simulated and predicted temperatures

    图  26  截面受力简图

    Figure  26.  Calculation diagram of cross-section

    图  27  等效单自由度体系的简化示意图

    Figure  27.  Simplified diagram of equivalent single degree of freedom system

    图  28  轴力对抗力函数的影响

    Figure  28.  Influence of axial force on the resistance function

    图  29  三角形荷载下单自由度弹塑性体系的最大响应[22]

    Figure  29.  Maximum response of elastic-plastic SDOF model under triangular loads[22]

    图  30  公式预测与有限元计算Δpeak对比

    Figure  30.  Comparison of predicted and finite element calculated values of Δpeak

    表  1  SCS墙参数

    Table  1.   SCS walls parameters

    研究内容 t0/min W0/kg R/m Z/(m·kg−1/3) n α/% 钢板厚度/mm fy/MPa fcu/MPa s/mm
    机理分析 0/30/60/90 29 2 0.65 0.1 7.8 3.5 355 30 180
    受火时间 0/15/30/45/60/75/90 29 2 0.65 0.1 7.8 3.5 235/460 30/40/50 180
    爆炸当量 0/30/60/90 23/29/37 2 0.7/0.65/0.6 0.1 7.8 3.5 355 30 180
    轴压比 0/30/60/90 29 2 0.65 0.1/0.2/0.3 7.8 3.5 355 30 180
    材料强度 0/30/60/90 29 2 0.65 0.1 7.8 3.5 235/355/460 30/40/50 180
    含钢率 0/30/60/90 29 2 0.65 0.1 4.4/6.7/7.8 2/3/3.5 355 30 180
    对拉钢筋间距 0/30/60/90 29 2 0.65 0.1 7.8 3.5 355 30 140/180/220
    下载: 导出CSV

    表  2  爆炸试验详细参数[2, 19]

    Table  2.   Detailed parameters of explosion tests[2, 19]

    试件编号爆炸当量/kg爆距R/m边界条件轴力/kNfy/MPafcu/MPa
    SCS-1[2]40.95两端铰接024226.4
    S2[19]32.85两端铰接58.423561.3
    下载: 导出CSV

    表  3  有限元与试验变形比值

    Table  3.   Ratio of FE to experimental deformation

    试件编号 Δmax/mm Δmax,FE/Δmax,test
    FE Test
    SCS-1(D1)[2] 28.22 28.01 1.01
    SCS-1(D4)[2] 15.82 17.18 0.92
    S7[18] 34.38 36.28 0.95
    S2[19] 23.75 24.39 0.97
    下载: 导出CSV
  • [1] 赵唯以, 王琳, 郭全全, 等. 双钢板混凝土组合结构抗冲击性能的研究进展 [J]. 钢结构(中英文), 2020, 35(3): 26–36. DOI: 10.13206/j.gjgS19121501.

    ZHAO W Y, WANG L, GUO Q Q, et al. Research advances of impact resistance of steel-concrete composite structures [J]. Steel Construction, 2020, 35(3): 26–36. DOI: 10.13206/j.gjgS19121501.
    [2] YU J, LIANG S L, REN Z P, et al. Structural behavior of steel-concrete-steel and steel-ultra-high-performance-concrete-steel composite panels subjected to near-field blast load [J]. Journal of Constructional Steel Research, 2023, 210: 108108. DOI: 10.1016/j.jcsr.2023.108108.
    [3] 赵春风, 张利, 李晓杰. 近场爆炸下波纹双钢板混凝土组合墙板的损伤破坏及抗爆性能 [J]. 高压物理学报, 2024, 38(1): 014102. DOI: 10.11858/gywlxb.20230727.

    ZHAO C F, ZHANG L, LI X J. Damage failure and anti-blast performance of concrete-infilled double steel corrugated-plate wall under near field explosion [J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014102. DOI: 10.11858/gywlxb.20230727.
    [4] WEI F, FANG C, WU B. Fire resistance of concrete-filled steel plate composite (CFSPC) walls [J]. Fire Safety Journal, 2017, 88: 26–39. DOI: 10.1016/j.firesaf.2016.12.008.
    [5] RUAN Z, CHEN L, FANG Q. Numerical investigation into dynamic responses of RC columns subjected for fire and blast [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 10–21. DOI: 10.1016/j.jlp.2015.01.009.
    [6] 胡文伟, 王蕊, 赵晖, 等. 考虑高温影响的钢管混凝土柱抗爆性能研究 [J]. 爆炸与冲击, 2021, 41(11): 58–69. DOI: 10.11883/bzycj-2020-0444.

    HU W W, WANG R, ZHAO H, et al. Study on explosion-resistance performance of concrete-filled steel tubular columns considering the influence of elevated temperatures [J]. Explosion and Shock Waves, 2021, 41(11): 58–69. DOI: 10.11883/bzycj-2020-0444.
    [7] 中华人民共和国住房和城乡建设部. JGJ/T 380-2015 钢板剪力墙技术规程 [S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. JGJ/T 380-2015 Technical specification for steel plate shear walls [S]. Beijing: China Architecture & Building Press, 2015.
    [8] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. GB/T 51340-2018 核电站钢板混凝土结构技术标准 [S]. 北京: 中国计划出版社, 2018.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration for Market Regulation. GB/T 51340-2018 Technical standard for steel plate concrete structures of nuclear power plants [S]. Beijing: China Planning Press, 2018.
    [9] 张帝, 杨军, 曾丹, 等. 钢筋混凝土排架结构的抗爆破坏等级 [J]. 爆炸与冲击, 2020, 40(12): 121405. DOI: 10.11883/bzycj-2020-0012.

    ZHANG D, YANG J, ZENG D, et al. Damage grades of reinforced concrete bent structures against blast [J]. Explosion and Shock Waves, 2020, 40(12): 121405. DOI: 10.11883/bzycj-2020-0012.
    [10] LIE T T, KODUR V K R. Fire resistance of steel columns filled with bar-reinforced concrete [J]. Journal of Structural Engineering, 1996, 122(1): 30–36. DOI: 10.1061/(ASCE)0733-9445(1996)122:1(30).
    [11] EN 1993-1-2: 2005 Design of steel structures-Part 1-2: General rules-structural fire design [S]. Brussels: European Committee for Standardization, 2004.
    [12] HONG S, VARMA A H. Analytical modeling of the standard fire behavior of loaded CFT columns [J]. Journal of Constructional Steel Research, 2009, 65(1): 54–69. DOI: 10.1016/j.jcsr.2008.04.008.
    [13] CHEN H, LIEW J Y. Explosion and fire analysis of steel frames using mixed element approach [J]. Journal of Engineering Mechanics, 2005, 131(6): 606–616. DOI: 10.1061/(ASCE)0733-9399(2005)131:6(606.
    [14] CHEN L, FANG Q, JIANG X Q, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 40–56. DOI: 10.1016/j.ijimpeng.2015.07.002.
    [15] 王泽芳. 双钢板—超高性能混凝土组合板冲切性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019.

    WANG Z F. Punching shear performance of steel-ultra-high performance concrete-steel sandwich slabs [D]. Harbin: Harbin Institute of Technology, 2019.
    [16] 韩林海. 钢管混凝土结构理论与实践[M]. 北京: 科学出版社, 2016.

    HAN L H. Concrete filled steel tubular structures theory and practice [M]. Beijing: Science Press, 2016.
    [17] 韦芳芳, 杜金娥, 胡雪峰, 等. 单面受火双钢板-混凝土组合剪力墙的耐火性能试验研究 [J]. 东南大学学报(自然科学版), 2016, 46(3): 518–522. DOI: 10.3969/j.issn.1001-0505.2016.03.011.

    WEI F F, DU J E, HU X F, et al. Experimental research on fire performance of concrete filled double-steel-plate composite wall exposed to one-side fire [J]. Journal of Southeast University (Natural Science Edition), 2016, 46(3): 518–522. DOI: 10.3969/j.issn.1001-0505.2016.03.011.
    [18] WANG H W, WU C Q, ZHANG F R, et al. Experimental study of large-sized concrete filled steel tube columns under blast load [J]. Construction and Building Materials, 2017, 134: 131–141. DOI: 10.1016/j.conbuildmat.2016.12.096.
    [19] 李国强, 瞿海雁, 杨涛春, 等. 钢管混凝土柱抗爆性能试验研究 [J]. 建筑结构学报, 2013, 34(12): 69–76. DOI: 10.14006/j.jzjgxb.2013.12.010.

    LI G Q, QU H Y, YANG T C, et al. Experimental study of concrete-filled steel tubular columns under blast loading [J]. Journal of Building Structures, 2013, 34(12): 69–76. DOI: 10.14006/j.jzjgxb.2013.12.010.
    [20] 段泊池, 杨冬冬, 刘发起, 等. 带有防火保护的圆钢管约束钢筋混凝土柱抗火性能分析与设计 [J]. 工程力学, 2024, 41(6): 118–129. DOI: 10.6052/j.issn.1000-4750.2022.05.0470.

    DUAN B C, YANG D D, LIU F Q, et al. Analysis and design on fire performance of circular steel tube confined reinforced concrete columns with fire protection [J]. Engineering Mechanics, 2024, 41(6): 118–129. DOI: 10.6052/j.issn.1000-4750.2022.05.0470.
    [21] 师燕超, 张浩, 李忠献. 钢筋混凝土梁式构件抗爆分析的改进等效单自由度方法 [J]. 建筑结构学报, 2019, 40(10): 8–16. DOI: 10.14006/j.jzjgxb.2019.0096.

    SHI Y C, ZHANG H, LI Z X. Improved equivalent single degree of freedom method for blast analysis of RC beams [J]. Journal of Building Structures, 2019, 40(10): 8–16. DOI: 10.14006/j.jzjgxb.2019.0096.
    [22] BIGGS J M. Introduction to structural dynamics [M]. New York: McGraw-Hill, 1964.
    [23] HENRYCH J. The dynamics of explosion and its use [M]. Amsterdam: Elsevier Scientific Publishing Company, 1979.
  • 加载中
图(30) / 表(3)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  7
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-11
  • 修回日期:  2025-02-25
  • 网络出版日期:  2025-02-28

目录

    /

    返回文章
    返回