• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

不同长径比下圆柱套筒的破片初速轴向分布

毕伟新 李伟兵 李军宝 朱炜 李文彬

毕伟新, 李伟兵, 李军宝, 朱炜, 李文彬. 不同长径比下圆柱套筒的破片初速轴向分布[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0294
引用本文: 毕伟新, 李伟兵, 李军宝, 朱炜, 李文彬. 不同长径比下圆柱套筒的破片初速轴向分布[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0294
BI Weixin, LI Weibing, LI Junbao, ZHU Wei, LI Wenbin. Axial distribution of fragment initial velocities from cylindrical casing with different length-to-diameter ratios[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0294
Citation: BI Weixin, LI Weibing, LI Junbao, ZHU Wei, LI Wenbin. Axial distribution of fragment initial velocities from cylindrical casing with different length-to-diameter ratios[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0294

不同长径比下圆柱套筒的破片初速轴向分布

doi: 10.11883/bzycj-2024-0294
基金项目: 内爆载荷下活性材料响应行为;国家自然科学基金(12302437);
详细信息
    作者简介:

    毕伟新(1993- ),男,博士研究生,1400219206@qq.com

    通讯作者:

    李伟兵(1982- ),男,博士,教授,njustlwb@163.com

  • 中图分类号: O381; TJ410

Axial distribution of fragment initial velocities from cylindrical casing with different length-to-diameter ratios

  • 摘要: 针对精确预测不同长径比(L/D)的圆柱套筒在一段起爆下的破片初速分布问题,首先基于试验验证的数值模型研究了L/D对破片初速的影响,在此基本上,提出了适用于L/D≥1圆柱套筒的初速分布计算模型,该模型中添加了与L/D相关的受轴向稀疏波影响的修正项,最后,通过试验和数值模拟对所提出的初速计算模型进行了验证。研究结果表明:不同L/D下的破片初速分布均呈现两端初速低,中间高的变化趋势,且L/D越大,破片初速越大,当L/D达到5时,最大破片初速与Gurney公式计算结果之间的相对误差仅为1.99%;公式计算结果与试验结果和数值计算结果的平均误差不超过6%,表明了该模型在预测不同L/D下的破片初速分布是可靠的。
  • 图  1  数值计算模型

    Figure  1.  Numerical calculation model

    图  2  试验结果与数值模拟结果对比

    Figure  2.  Comparison of experimental results and numerical results

    图  3  不同L/D下破片初速分布

    Figure  3.  Fragment initial velocity distribution with different L/D

    图  4  稀疏波传播过程

    Figure  4.  Process of rarefaction wave propagation

    图  5  不同L/D下破片的最大初速

    Figure  5.  Maximum initial velocity of fragments for different L/D

    图  6  L/D=1时下破片速度分布和相对误差分布对比情况

    Figure  6.  Comparison of fragment velocity distribution and relative error distribution while L/D=1

    图  7  L/D=2时下破片速度分布和相对误差分布对比情况

    Figure  7.  Comparison of fragment velocity distribution and relative error distribution while L/D=2

    图  8  L/D=3时下破片速度分布和相对误差分布对比情况

    Figure  8.  Comparison of fragment velocity distribution and relative error distribution while L/D=3

    图  9  L/D=4时下破片速度分布和相对误差分布对比情况

    Figure  9.  Comparison of fragment velocity distribution and relative error distribution while L/D=4

    图  10  L/D=5时下破片速度分布和相对误差分布对比情况

    Figure  10.  Comparison of fragment velocity distribution and relative error distribution while L/D=5

    图  11  系数A1B1C1D1L/D的关系

    Figure  11.  Relationship between coefficients A1, B1, C1, D1 and L/D

    图  12  试验结果和式(15)计算结果对比

    Figure  12.  Comparison of experimental results and calculation results of Eq. (15)

    图  13  仿真结果与式(15)计算结果对比(Cases V1)

    Figure  13.  Comparison of numerical results and calculation results of Eq. (18) (Cases V1)

    图  14  仿真结果与式(15)计算结果对比(Cases V2)

    Figure  14.  Comparison of numerical results and calculation results of Eq. (18) (Cases V2)

    图  15  仿真结果与式(15)计算结果对比(Cases V3)

    Figure  15.  Comparison of numerical results and calculation results of Eq. (18) (Cases V3)

    表  1  不同L/D的数值模拟试样

    Table  1.   Simulation samples with different L/D

    模型D/mmL/mmL/Dδ/mm模型D/mmL/mmL/Dδ/mm
    123.623.61.03.04523.659.02.53.04
    223.629.51.253.04623.670.83.03.04
    323.635.41.53.04723.694.44.03.04
    423.647.22.03.04823.61185.03.04
    下载: 导出CSV

    表  2  AISI1045的J-C本构模型参数[15-16]

    Table  2.   J–C constitutive model parameters of AISI1045[15-16]

    密度/(g·cm−3)AJC/MPaBJC/MPanCJCmD1D2D3D4D5
    7.835073200.280.0641.060.150.721.660.005-0.84
    下载: 导出CSV

    表  3  B炸药的材料参数[4]

    Table  3.   Material parameters of Comp B[4]

    爆速/(m·s−1)爆轰压力/GPaE/(kJ·m−3)AJWL/GPaBJWL/GPaR1R2ω
    7980298.5×1065427.684.21.10.24
    下载: 导出CSV

    表  4  黄广炎的试验样本参数[4]

    Table  4.   Parameters of HUANG G Y's test sample [4]

    工况套筒材料装药材料D/mmL/mmδ/mm
    1ASI1045B炸药23.6077.303.04
    2ASI1045B炸药23.5677.156.69
    下载: 导出CSV

    表  5  7个数值模型得到的A1B1C1D1系数

    Table  5.   Coefficients A1, B1, C1 and D1 obtained from seven numerical models

    L/DA1B1C1D1L/DA1B1C1D1
    1.00.4652.2820.4250.8232.50.4651.2930.2961.970
    1.250.4651.9830.3261.1213.00.4651.2670.3032.030
    1.50.4651.6070.2991.3994.00.4661.1750.3012.072
    2.00.4661.3140.2911.835.00.4661.1370.2972.086
    下载: 导出CSV

    表  6  9个用于验证公式的试样参数

    Table  6.   Nine sample parameters used to validate the formula

    工况装药D/mmL/mmD/Lδ/mm工况装药D/mmL/mmD/Lδ/mm工况装药D/mmL/mmD/Lδ/mm
    V1-1B炸药20201.03.0V2-1B炸药30301.04.0V3-1HMX20201.03.0
    V1-2B炸药20401.23.0V2-2B炸药30601.24.0V3-2HMX20401.23.0
    V1-3B炸药20603.03.0V2-3B炸药30903.04.0V3-3HMX20603.03.0
     注:所有工况中套筒均材料均为ASI1045.
    下载: 导出CSV

    表  7  HMX的材料参数[22]

    Table  7.   The material parameters of HMX[22]

    爆速/(m·s−1)爆轰压力/GPaE/(kJ·m−3)AJWL/GPaBJWL/GPaR1R2ω
    911042.010.5×106778.287.074.21.00.30
    下载: 导出CSV
  • [1] GURNEY R W. The initial velocities of fragments from bombs, shell, and grenades [M]. Aberdeen: Ballistic Research Laboratories, 1943.
    [2] ZULKOSKI T. Development of optimum theoretical warhead design criteria [R]. China Lake: Naval Weapons Center, 1976.
    [3] CHARRON Y J. Estimation of velocity distribution of fragmenting warheads using a modified Gurney method [M]. PN, 1979.
    [4] HUANG G Y, LI W, FENG S S. Axial distribution of fragment velocities from cylindrical casing under explosive loading [J]. International Journal of Impact Engineering, 2015, 76: 20–27. DOI: 10.1016/j.ijimpeng.2014.08.007.
    [5] GAO Y G, ZHANG B, YAN X M, et al. Axial distribution of fragment velocities from cylindrical casing with air parts at two ends [J]. International Journal of Impact Engineering, 2020, 140: 103535. DOI: 10.1016/j.ijimpeng.2020.103535.
    [6] LIU H, HUANG G Y, GUO Z W, et al. Fragments velocity distribution and estimating method of thin-walled cylindrical improvised explosive devices with different length-to-diameter ratios [J]. Thin-Walled Structures, 2022, 175: 109212. DOI: 10.1016/j.tws.2022.109212.
    [7] BI W X, LI W B, LUO Y S, et al. Pre-control of shell expansion fracture process by high energy beam [J]. Journal of Physics: Conference Series, 2023, 2478: 072002. DOI: 10.1088/1742-6596/2478/7/072002.
    [8] XU H Y, LI W B, LI W B, et al. Fracture mechanism of a cylindrical shell cut by circumferential detonation collision [J]. Defence Technology, 2021, 17(5): 1650–1659. DOI: 10.1016/j.dt.2020.09.006.
    [9] 李元, 李燕华, 刘琛, 等. 预制破片战斗部爆轰产物泄露数值模拟 [J]. 北京理工大学学报, 2017, 37(8): 778–782. DOI: 10.15918/j.tbit1001-0645.2017.08.002.

    LI Y, LI Y H, LIU C, et al. Modeling of the gas leakage of premade fragment warhead [J]. Transactions of Beijing institute of Technology, 2017, 37(8): 778–782. DOI: 10.15918/j.tbit1001-0645.2017.08.002.
    [10] LI W, HUANG G Y, FENG S S. Effect of eccentric edge initiation on the fragment velocity distribution of a cylindrical casing filled with charge [J]. International Journal of Impact Engineering, 2015, 80: 107–115. DOI: 10.1016/j.ijimpeng.2015.01.007.
    [11] XU W L, WANG C, CHEN D P. Formation of a bore-center annular shaped charge and its penetration into steel targets [J]. International Journal of Impact Engineering, 2019, 127: 122–134. DOI: 10.1016/j.ijimpeng.2019.01.008.
    [12] BHATTACHARYA A K, NIX W D. Finite element simulation of indentation experiments [J]. International Journal of Solids and Structures, 1988, 24(9): 881–891. DOI: 10.1016/0020-7683(88)90039-X.
    [13] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [14] SOUERS P C, HASELMAN JR L C. Detonation equation of state at LLNL, 1993: UCRL-ID-116113 [R]. Livermore: Lawrence Livermore National Laboratory, 1994. DOI: 10.2172/10166640.
    [15] 陈刚, 陈忠富, 陶俊林, 等. 45钢动态塑性本构参量与验证 [J]. 爆炸与冲击, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06.

    CHEN G, CHEN Z F, TAO J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel [J]. Explosion and Shock Waves, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06.
    [16] 陈刚, 陈忠富, 徐伟芳, 等. 45钢的J-C损伤失效参量研究 [J]. 爆炸与冲击, 2007, 27(2): 131–135. DOI: 10.11883/1001-1455(2007)02-0131-05.

    CHEN G, CHEN Z F, XU W F, et al. Investigation on the J-C ductile fracture parameters of 45 steel [J]. Explosion and Shock Waves, 2007, 27(2): 131–135. DOI: 10.11883/1001-1455(2007)02-0131-05.
    [17] LI W B, WANG X M, LI W B. The effect of annular multi-point initiation on the formation and penetration of an explosively formed penetrator [J]. International Journal of Impact Engineering, 2010, 37(4): 414–424. DOI: 10.1016/j.ijimpeng.2009.08.008.
    [18] 张守中. 爆炸与冲击动力学 [M]. 北京: 兵器工业出版社, 1993.

    ZHANG S Z. Explosion and impact dynamics [M]. Beijing: CNGC, 1993.
    [19] DANEL J F, KAZANDJIAN L. A few remarks about the Gurney energy of condensed explosives [J]. Propellants, Explosives, Pyrotechnics, 2004, 29(5): 314–316. DOI: 10.1002/prep.200400060.
    [20] 高月光, 冯顺山, 刘云辉, 等. 不同端盖厚度的圆柱形装药壳体破片初速分布 [J]. 兵工学报, 2022, 43(7): 1527–1536. DOI: 10.12382/bgxb.2021.0443.

    GAO Y G, FENG S S, LIU Y H, et al. Initial velocity distribution of fragments from cylindrical charge shells with different thick end caps [J]. Acta Armamentarii, 2022, 43(7): 1527–1536. DOI: 10.12382/bgxb.2021.0443.
    [21] ANDERSON JR C E, PREDEBON W W, KARPP R R. Computational modeling of explosive-filled cylinders [J]. International Journal of Engineering Science, 1985, 23(12): 1317–1330. DOI: 10.1016/0020-7225(85)90110-7.
    [22] DOBRATZ B M. LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants: UCRL-52997 [R]. Livermore: Lawrence Livermore National Laboratory. DOI: 10.2172/6530310.
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  13
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-19
  • 修回日期:  2024-11-06
  • 网络出版日期:  2024-11-11

目录

    /

    返回文章
    返回