用于软材料的中应变率LSHPB系统及应用

徐沛栋 倪萍 杨宝 蒋震宇 刘逸平 刘泽佳 周立成 汤立群

徐沛栋, 倪萍, 杨宝, 蒋震宇, 刘逸平, 刘泽佳, 周立成, 汤立群. 用于软材料的中应变率LSHPB系统及应用[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0307
引用本文: 徐沛栋, 倪萍, 杨宝, 蒋震宇, 刘逸平, 刘泽佳, 周立成, 汤立群. 用于软材料的中应变率LSHPB系统及应用[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0307
XU Peidong, NI Ping, YANG Bao, JIANG Zhenyu, LIU Yiping, LIU Zejia, ZHOU Licheng, TANG Liqun. An intermediate strain rate LSHPB system for soft materials and its application[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0307
Citation: XU Peidong, NI Ping, YANG Bao, JIANG Zhenyu, LIU Yiping, LIU Zejia, ZHOU Licheng, TANG Liqun. An intermediate strain rate LSHPB system for soft materials and its application[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0307

用于软材料的中应变率LSHPB系统及应用

doi: 10.11883/bzycj-2024-0307
基金项目: 国家自然科学基金(11932007, 12372181, 12072115, 12072116)
详细信息
    作者简介:

    徐沛栋(1995- ),男,博士研究生,201810101422@mail.scut.edu.cn

    通讯作者:

    汤立群(1966- ),男,博士,教授,lqtang@scut.edu.cn

  • 中图分类号: O347.3

An intermediate strain rate LSHPB system for soft materials and its application

  • 摘要: 生物软材料大多是高含水率的超软材料,其力学性能在宽应变率范围内随着应变率提高而非线性增强。然而由于实验条件限制,在中应变率下对超软材料进行大变形测试显得比较困难。设计并建造了长15 m的双子弹电磁驱动长分离式霍普金森压杆(long split Hopkinson pressure bar, LSHPB)系统,可用于超软材料的大变形中应变率测试。使用该LSHPB系统和高速SHPB系统分别对硅橡胶进行了测试,比较二者的实验结果,验证了本套系统的可靠性。应用LSHPB系统测量了聚乙烯醇(polyvinyl alcohols, PVA)水凝胶在中应变率力学性能,并且结合已有的低和高应变率的数据分析,说明了中应变率动态性能测试的必要性。
  • 图  1  双子弹电磁驱动超长分离式霍普金森压杆示意图

    Figure  1.  Schematic of the double electromagnetic driving long split-Hopkinson pressure bar device for intermediate strain rate testing

    图  2  双子弹电磁驱动超长分离式霍普金森压杆实物图[25]

    Figure  2.  Physical diagram of the double electromagnetic driving long split-Hopkinson pressure bar device for intermediate strain rate testing[25]

    图  3  波分离示意图

    Figure  3.  Schematic diagram of stress wave separation

    图  4  硅橡胶试件

    Figure  4.  Silicone rubber specimens

    图  5  双子弹电磁驱动SHPB系统[23](谢倍欣,汤立群,姜锡权,等,2018)

    Figure  5.  Double-striker electromagnetic driving SHPB system[23]

    图  6  分别在LSHPB和SHPB中测得的硅橡胶应力-应变关系

    Figure  6.  The stress-strain relationship of silicone rubber measured in LSHPB and SHPB, respectively.

    图  7  饱和与脱水的 PVA 水凝胶试件

    Figure  7.  Saturated and dehydrated PVA

    图  8  典型的350 s−1下PVA水凝胶LSHPB测试中应变片 1、3、4 测得的应变以及点 3 处的左、右行波

    Figure  8.  The strain measured by strain gauges 1, 3, and 4 in the LSHPB test of PVA hydrogel at 350 s−1, as well as the left and right traveling waves at point 3.

    图  9  端面处入射波、反射波和透射波的绝对值

    Figure  9.  The absolute values of the incident wave, reflected wave, and transmitted wave at the end surface.

    图  10  典型的350 s−1下PVA水凝胶LSHPB实验的结果

    Figure  10.  The results of a typical PVA hydrogel LSHPB test at 350 s−1

    图  11  350 s−1下PVA水凝胶的应力应变关系

    Figure  11.  The stress-strain relationship of PVA hydrogel at 350 s−1.

    图  12  PVA 水凝胶的应力(及应变率)与应变的关系

    Figure  12.  The stress (and strain rate) - strain relationship of PVA hydrogel

    图  13  PVA 水凝胶的应变率效应

    Figure  13.  The strain rate effect of PVA hydrogel

    图  14  用其他数据预测100, 350 s−1应变率力学行为

    Figure  14.  Mechanical behavior of 100, 350 s−1 strain rate predicted with other data

    图  15  用其他数据预测350, 1500 s−1应变率力学行为

    Figure  15.  Mechanical behavior of 350, 1500 s−1 strain rate predicted with other data

    表  1  材料参数

    Table  1.   Material parameters

    所用数据应变率/s−1 κυT/kPa k α β G11/kPa G21/kPa θ1/s G12/kPa G22/kPa θ2/μs
    0.001~0.1, 10001500 16.7 6.12 0.079 0.58 17.7 0 77.6 338 228 98.9
    0.001~100, 1000 16.7 6.12 0.079 0.58 17.7 0 77.6 510 261 50.4
    下载: 导出CSV
  • [1] ZHANG Y T, ZHANG Y R, TANG L Q, et al. Uniaxial compression constitutive equations for saturated hydrogel combined water-expelled behavior with environmental factors and the size effect [J]. Mechanics of Advanced Materials and Structures, 2022, 29(28): 7491–7502. DOI: 10.1080/15376494.2021.2000682.
    [2] ZHANG Y R, XU K J, BAI Y L, et al. Features of the volume change and a new constitutive equation of hydrogels under uniaxial compression [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 85: 181–187. DOI: 10.1016/j.jmbbm.2018.06.004.
    [3] WANG J Y, ZHANG Y R, JIANG Z Y, et al. Mechanical behavior and constitutive equations of porcine brain tissue considering both solution environment effect and strain rate effect [J]. Mechanics of Advanced Materials and Structures, 2024, 31(10): 2115–2129. DOI: 10.1080/15376494.2022.2150917.
    [4] WANG J Y, ZHANG Y R, LEI Z Y, et al. Hydrogels with brain tissue-like mechanical properties in complex environments [J]. Materials & Design, 2023, 234: 112338. DOI: 10.1016/j.matdes.2023.112338.
    [5] XIE B X, XU P D, TANG L Q, et al. Dynamic mechanical properties of polyvinyl alcohol hydrogels measured by double-striker electromagnetic driving SHPB system [J]. International Journal of Applied Mechanics, 2019, 11(2): 1950018. DOI: 10.1142/S1758825119500182.
    [6] BHUJANGRAO T, FROUSTEY C, IRIONDO E, et al. Review of intermediate strain rate testing devices [J]. Metals, 2020, 10(7): 894. DOI: 10.3390/met10070894.
    [7] SONG B, CHEN W, LU W Y. Compressive mechanical response of a low-density epoxy foam at various strain rates [J]. Journal of Materials Science, 2007, 42(17): 7502–7507. DOI: 10.1007/s10853-007-1612-z.
    [8] 惠旭龙, 白春玉, 刘小川, 等. 宽应变率范围下2A16-T4铝合金动态力学性能 [J]. 爆炸与冲击, 2017, 37(5): 871–878. DOI: 10.11883/1001-1455(2017)05-0871-08.

    XI X L, BAI C Y, LIU X C, et al. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates [J]. Explosion and Shock Waves, 2017, 37(5): 871–878. DOI: 10.11883/1001-1455(2017)05-0871-08.
    [9] SONG B, SYN C J, GRUPIDO C L, et al. A long split hopkinson pressure bar (LSHPB) for Intermediate-rate characterization of soft materials [J]. Experimental Mechanics, 2008, 48(6): 809–815. DOI: 10.1007/s11340-007-9095-z.
    [10] SHIM J, MOHR D. Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates [J]. International Journal of Impact Engineering, 2009, 36(9): 1116–1127. DOI: 10.1016/j.ijimpeng.2008.12.010.
    [11] 钟东海, 郭鑫, 熊雪梅, 等. 直撞式霍普金森压杆二次加载技术 [J]. 爆炸与冲击, 2023, 43(4): 044101. DOI: 10.11883/bzycj-2022-0210.

    ZHONG D H, GUO X, XIONG X M, et al. Direct-impact double-loading Hopkinson bar technique [J]. Explosion and Shock Waves, 2023, 43(4): 044101. DOI: 10.11883/bzycj-2022-0210.
    [12] KIM J M, PARK J S, LEEM D H, et al. Determination of strain rate dependence at intermediate strain rates using acceleration information [J]. International Journal of Impact Engineering, 2023, 173: 104482. DOI: 10.1016/j.ijimpeng.2022.104482.
    [13] JIA B, CHEN P W, RUSINEK A, et al. Thermo-viscoplastic behavior of DP800 steel at quasi-static, intermediate, high and ultra-high strain rates [J]. International Journal of Mechanical Sciences, 2022, 226: 107408. DOI: 10.1016/j.ijmecsci.2022.107408.
    [14] QIN Z H, ZHU J N, LI W, et al. System ringing in impact test triggered by upper-and-lower yield points of materials [J]. International Journal of Impact Engineering, 2017, 108: 295–302. DOI: 10.1016/j.ijimpeng.2017.04.020.
    [15] 高光发. 夹心杆系统中一维弹塑性波演化精细分析(Ⅱ): 弹塑性交界面与平台段反射衰减 [J]. 爆炸与冲击, 2024, 44(8): 081442. DOI: 10.11883/bzycj-2023-0392.

    GAO G F. Meticulous analysis of one-dimensional elasto-plastic wave evolution in sandwich rod systems (part Ⅱ): reflection attenuation at the elasto-plastic interface and platform section [J]. Explosion and Shock Waves, 2024, 44(8): 081442. DOI: 10.11883/bzycj-2023-0392.
    [16] 舒旗, 董新龙, 俞鑫炉. 基于Hopkinson压杆的M型试样动态拉伸实验方法研究 [J]. 爆炸与冲击, 2020, 40(8): 084101. DOI: 10.11883/bzycj-2019-0433.

    SHU Q, DONG X L, YU X L. A dynamic tensile method for M-shaped specimen loaded by Hopkinson pressure bar [J]. Explosion and Shock Waves, 2020, 40(8): 084101. DOI: 10.11883/bzycj-2019-0433.
    [17] ZHAO H, GARY G, KLEPACZKO J R. On the use of a viscoelastic split Hopkinson pressure bar [J]. International Journal of Impact Engineering, 1997, 19(4): 319–330. DOI: 10.1016/s0734-743x(96)00038-3.
    [18] XU P D, TANG L Q, ZHANG Y R, et al. SHPB experimental method for ultra-soft materials in solution environment [J]. International Journal of Impact Engineering, 2022, 159: 104051. DOI: 10.1016/j.ijimpeng.2021.104051.
    [19] LIU Z W, CHEN X M, LV X T, et al. A mini desktop impact test system using multistage electromagnetic launch [J]. Measurement, 2014, 49: 68–76. DOI: 10.1016/j.measurement.2013.11.029.
    [20] 王维斌, 索涛, 郭亚洲, 等. 电磁霍普金森杆实验技术及研究进展 [J]. 力学进展, 2021, 51(4): 729–754. DOI: 10.6052/1000-0992-20-024.

    WANG W B, SUO T, GUO Y Z, et al. Experimental technique and research progress of electromagnetic Hopkinson bar [J]. Advances in Mechanics, 2021, 51(4): 729–754. DOI: 10.6052/1000-0992-20-024.
    [21] 杜冰, 郭亚洲, 李玉龙. 一种基于电磁霍普金森杆的材料动态包辛格效应测试装置及方法 [J]. 爆炸与冲击, 2020, 40(8): 081101. DOI: 10.11883/bzycj-2020-0050.

    DU B, GUO Y Z, LI Y L. A novel technique for determining the dynamic Bauschinger effect by electromagnetic Hopkinson bar [J]. Explosion and Shock Waves, 2020, 40(8): 081101. DOI: 10.11883/bzycj-2020-0050.
    [22] 胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.

    HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
    [23] 谢倍欣, 汤立群, 姜锡权, 等. 用于软材料的双子弹电磁驱动SHPB系统 [J]. 爆炸与冲击, 2019, 39(5): 054101. DOI: 10.11883/bzycj-2017-0394.

    XIE B X, TANG L Q, JIANG X Q, et al. A double-striker electromagnetic driving SHPB system for soft materials [J]. Explosion and Shock Waves, 2019, 39(5): 054101. DOI: 10.11883/bzycj-2017-0394.
    [24] WANG L L, LABIBES K, AZARI Z, et al. Generalization of split Hopkinson bar technique to use viscoelastic bars [J]. International Journal of Impact Engineering, 1994, 15(5): 669–686. DOI: 10.1016/0734-743x(94)90166-i.
    [25] XU P D, TANG L Q, WANG J Y, et al. Mechanical behavior of PVA hydrogels over a wide strain rate range and a new two-phase visco-hyperelastic constitutive model [J]. Mechanics of Advanced Materials and Structures, 2024: 1–14. DOI: 10.1080/15376494.2024.2386398. (查阅网上资料,未找到对应的卷期页码信息,请确认) .
    [26] BACON C. An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar [J]. Experimental Mechanics, 1998, 38(4): 242–249. DOI: 10.1007/bf02410385.
    [27] LUNDBERG B, HENCHOZ A. Analysis of elastic waves from two-point strain measurement [J]. Experimental Mechanics, 1977, 17(6): 213–218. DOI: 10.1007/BF02324491.
    [28] 巫绪涛, 胡时胜, 张芳荣. 两点应变测量法在SHPB测量技术上的运用 [J]. 爆炸与冲击, 2003, 23(4): 309–312. DOI: 10.11883/1001-1455(2003)04-0309-4.

    WU X T, HU S S, ZHANG F R. Application of two-point strain measurement to the SHPB technique [J]. Explosion and Shock Waves, 2003, 23(4): 309–312. DOI: 10.11883/1001-1455(2003)04-0309-4.
    [29] 宋力, 胡时胜. SHPB数据处理中的二波法与三波法 [J]. 爆炸与冲击, 2005, 25(4): 368–373. DOI: 10.11883/1001-1455(2005)04-0368-06.

    SONG L, HU S S. Two-wave and three-wave method in SHPB data processing [J]. Explosion and Shock Waves, 2005, 25(4): 368–373. DOI: 10.11883/1001-1455(2005)04-0368-06.
    [30] GORHAM D A. The effect of specimen dimensions on high strain rate compression measurements of copper [J]. Journal of Physics D: Applied Physics, 1991, 24(8): 1489–1492. DOI: 10.1088/0022-3727/24/8/041.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  26
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-26
  • 修回日期:  2024-11-04
  • 网络出版日期:  2024-11-13

目录

    /

    返回文章
    返回