• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

动荷载下硅砂的破碎特性及吸能效应试验研究

崔鹏 罗刚 刘乐 曹芯芯 李邦翔 梅雪峰

崔鹏, 罗刚, 刘乐, 曹芯芯, 李邦翔, 梅雪峰. 动荷载下硅砂的破碎特性及吸能效应试验研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0309
引用本文: 崔鹏, 罗刚, 刘乐, 曹芯芯, 李邦翔, 梅雪峰. 动荷载下硅砂的破碎特性及吸能效应试验研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0309
CUI Peng, LUO Gang, LIU Le, CAO Xinxin, LI Bangxiang, MEI Xuefeng. Experimental study on crushing characteristics and energy absorption effect of silica sand under dynamic loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0309
Citation: CUI Peng, LUO Gang, LIU Le, CAO Xinxin, LI Bangxiang, MEI Xuefeng. Experimental study on crushing characteristics and energy absorption effect of silica sand under dynamic loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0309

动荷载下硅砂的破碎特性及吸能效应试验研究

doi: 10.11883/bzycj-2024-0309
基金项目: 国家自然科学基金(52309137,42277143);国家重点研发计划(2022YFC3005704);四川省自然资源厅科技项目(KJ-2023-004);山东省自然科学基金(ZR2021QE209)
详细信息
    作者简介:

    崔 鹏(1998- ),男,硕士研究生,22507020014@stumail.sdut.edu.cn

    通讯作者:

    梅雪峰(1987- ),男,博士,讲师,xfmei@my.swjtu.edu.cn

  • 中图分类号: O383; TU318

Experimental study on crushing characteristics and energy absorption effect of silica sand under dynamic loading

  • 摘要: 为揭示动荷载下硅砂的破碎特性及吸能效应,基于改进的分离式霍普金森杆(split Hopkinson pressure bar, SHPB)研究了4种不同粒径砂样(2.5~5.0 mm、1.25~2.5 mm、0.6~1.25 mm和<0.3 mm)的动力响应特征。结果表明,粒径和应变率会影响砂的动态应力-应变行为。砂的变形可分为弹性、屈服和塑性等3个阶段。试样的压实过程主要由屈服阶段的塑性压实和塑性阶段的破碎压密组成;颗粒相对破碎率与应变率及有效粒径均近似成正比关系,与分形维数成反比;颗粒粒度对吸能效率的影响随颗粒特性的不同而变化(矿物组成、粒径及分化程度等);相同应力水平下,颗粒粒径越大,能量吸收效率越高;相同加载应变率条件下,颗粒越大,试样的峰值应力越小。为提高砂的吸能效率和减小负荷水平,建议采用较大粒径的硅砂。
  • 图  1  改进的霍普金森杆

    Figure  1.  Improved split Hopkinson pressure bar

    图  2  粒径分布图

    Figure  2.  Particle size distribution

    图  3  硅砂表面扫描电镜图

    Figure  3.  Scanning electron microscope photo of silica sand

    图  4  试验步骤

    Figure  4.  Test steps

    图  5  典型三波图

    Figure  5.  Typical three-wave pattern

    图  6  应力平衡验证

    Figure  6.  Stress equilibrium verification

    图  7  重复性验证

    Figure  7.  Replication experiment

    图  8  应变时程曲线

    Figure  8.  Strain time history curve

    图  9  应变率时程曲线

    Figure  9.  Strain rate time history curve

    图  10  不同应变率下应力-应变曲线

    Figure  10.  Stress-strain curves under different strain rates

    图  11  典型应力-应变曲线

    Figure  11.  Typical stress-strain curve

    图  12  屈服应力与有效粒径的关系

    Figure  12.  Relationship between yield stress and effective diameter

    图  13  峰值应力与应变率的关系

    Figure  13.  Relationship between peak stress and strain rate

    图  14  不同粒径下颗粒变形特性

    Figure  14.  Deformation characteristics of particles under different particle sizes

    图  15  颗粒相对破碎率的定义

    Figure  15.  Definition particle of relative breakage

    图  16  砂颗粒破碎模式[34]

    Figure  16.  Particle crushing mode of sand[34]

    图  17  粒径分布演化

    Figure  17.  Evolution of particle size distribution

    图  18  不同应变率下相对破碎率与有效粒径的关系

    Figure  18.  Relationship between relative breakage and effective particle size under different strain rates

    图  19  不同粒径下相对破碎率与应变率的关系

    Figure  19.  Correlation of relative breakage with strain rate across particle size

    图  20  颗粒破碎前后对比

    Figure  20.  Comparison before and after particle crushing

    图  21  分形维数演化模式

    Figure  21.  Fractal dimension evolution model

    图  22  不同应变率下有效粒径与分形维数的关系

    Figure  22.  Relationship between effective particle size and fractal dimension under varying strain rates

    图  23  不同粒径下相对破碎系数与分形维数的关系

    Figure  23.  Relationship between relative breakage and fractal dimension under different particle sizes

    图  24  分形维数与峰值应力的关系

    Figure  24.  Relationship between fractal dimension and peak stress

    图  25  应变率与峰值应力的关系

    Figure  25.  Relationship between strain rate and peak stress

    图  26  不同应变率下粒径与不均匀系数的关系

    Figure  26.  Relationship between particle size and unevenness coefficient under varying strain rates

    图  27  相对破碎率和入射能的关系

    Figure  27.  Relationship between incident energy and relative breakage

    图  28  不同应变率下能量吸收效率与应力的关系

    Figure  28.  Relationship between energy absorption efficiency and stress under varying strain rates

    图  29  不同应变率下能量吸收效率与应变的关系

    Figure  29.  Relationship between energy absorption efficiency and strain under varying strain rates

  • [1] 于潇, 陈力, 方秦. 珊瑚砂中应力波衰减规律的实验研究 [J]. 岩石力学与工程学报, 2018, 37(6): 1520–1529. DOI: 10.13722/j.cnki.jrme.2018.0147.

    YU X, CHEN L, FANG Q. Experimental study on the attenuation of stress wave in coral sand [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1520–1529. DOI: 10.13722/j.cnki.jrme.2018.0147.
    [2] 杨阳, 张春会, 崔恩杰, 等. 单颗粒与单粒径钙质砂破碎特性及其关联关系研究 [J]. 岩石力学与工程学报, 2022, 41(S2): 3410–3418. DOI: 10.13722/j.cnki.jrme.2021.1148.

    YANG Y, ZHANG C H, CUI E J, et al. The crushing characteristics of single particle and uniformly-graded sample of carbonate sand and their association relationship [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S2): 3410–3418. DOI: 10.13722/j.cnki.jrme.2021.1148.
    [3] 周辉, 任辉启, 吴祥云, 等. 成层式防护结构中分散层研究综述 [J]. 爆炸与冲击, 2022, 42(11): 111101. DOI: 10.11883/bzycj-2022-0280.

    ZHOU H, REN H Q, WU X Y, et al. A review of sacrificial claddings in multilayer protective structure [J]. Explosion and Shock Waves, 2022, 42(11): 111101. DOI: 10.11883/bzycj-2022-0280.
    [4] ZHAO D B, YI W J, KUNNATH S K. Numerical simulation and shear resistance of reinforced concrete beams under impact [J]. Engineering Structures, 2018, 166: 387–401. DOI: 10.1016/j.engstruct.2018.03.072.
    [5] LIN Y, YAO W, JAFARI M, et al. Quantification of the dynamic compressive response of two Ottawa sands [J]. Experimental Mechanics, 2017, 57(9): 1371–1382. DOI: 10.1007/s11340-017-0304-0.
    [6] SONG B, CHEN W N, LUK V. Impact compressive response of dry sand [J]. Mechanics of Materials, 2009, 41(6): 777–785. DOI: 10.1016/j.mechmat.2009.01.003.
    [7] 吴建利, 胡卸文, 梅雪峰, 等. 落石冲击混凝土板与缓冲层组合结构的动力响应 [J]. 水文地质工程地质, 2021, 48(1): 78–87. DOI: 10.16030/j.cnki.issn.1000-3665.202004029.

    WU J L, HU X W, MEI X F, et al. Dynamic response of RC slab with cushion layer composed of sandy soil to rockfall impact [J]. Hydrogeology & Engineering Geology, 2021, 48(1): 78–87. DOI: 10.16030/j.cnki.issn.1000-3665.202004029.
    [8] 吕华, 王仲琦. 密实填充砂墙对冲击波消波吸能的试验研究 [J]. 中国安全科学学报, 2016, 26(10): 64–69. DOI: 10.16265/j.cnki.issn1003-3033.2016.10.012.

    LYU H, WANG Z Q. Experimental study of shock attenuation by dense packed sand wall [J]. China Safety Science Journal, 2016, 26(10): 64–69. DOI: 10.16265/j.cnki.issn1003-3033.2016.10.012.
    [9] 蔡改贫, 郭进山, 夏刘洋. 基于Weibull分布的Bond冲击破碎粒度分布特征 [J]. 金属矿山, 2016, 45(4): 118–121. DOI: 10.3969/j.issn.1001-1250.2016.04.024.

    CAI G P, GUO J S, XIA L Y. Particle size distribution characteristics of Bond impact based on Weibull distribution [J]. Metal Mine, 2016, 45(4): 118–121. DOI: 10.3969/j.issn.1001-1250.2016.04.024.
    [10] 潘亚豪, 宗周红, 钱海敏, 等. 钙质砂介质中爆炸波传播规律的试验研究 [J]. 爆炸与冲击, 2023, 43(5): 053201. DOI: 10.11883/bzycj-2022-0117.

    PAN Y H, ZONG Z H, QIAN H M, et al. Experimental study on blast wave propagation in calcareous sand [J]. Explosion and Shock Waves, 2023, 43(5): 053201. DOI: 10.11883/bzycj-2022-0117.
    [11] YU X, CHEN L, FANG Q, et al. Determination of attenuation effects of coral sand on the propagation of impact-induced stress wave [J]. International Journal of Impact Engineering, 2019, 125: 63–82. DOI: 10.1016/j.ijimpeng.2018.11.004.
    [12] 董凯, 任辉启, 阮文俊, 等. 爆炸冲击下珊瑚砂动态本构模型 [J]. 爆炸与冲击, 2021, 41(4): 043101. DOI: 10.11883/bzycj-2020-0172.

    DONG K, REN H Q, RUAN W J, et al. Dynamic constitutive model of coral sand under blast loading [J]. Explosion and Shock Waves, 2021, 41(4): 043101. DOI: 10.11883/bzycj-2020-0172.
    [13] LUO H Y, COOPER W L, LU H B. Effects of particle size and moisture on the compressive behavior of dense Eglin sand under confinement at high strain rates [J]. International Journal of Impact Engineering, 2014, 65: 40–55. DOI: 10.1016/j.ijimpeng.2013.11.001.
    [14] OUYANG H R, DAI G L, QIN W, et al. Dynamic behaviors of calcareous sand under repeated one-dimensional impacts [J]. Soil Dynamics and Earthquake Engineering, 2021, 150: 106891. DOI: 10.1016/J.SOILDYN.2021.106891.
    [15] LV Y R, WANG Y, ZUO D J. Effects of particle size on dynamic constitutive relation and energy absorption of calcareous sand [J]. Powder Technology, 2019, 356: 21–30. DOI: 10.1016/j.powtec.2019.07.088.
    [16] XU D S, SHEN G, LIU Q M, et al. Dynamic mechanical response and particle breakage characteristics of calcareous sand [J]. Soil Dynamics and Earthquake Engineering, 2024, 181: 108653. DOI: 10.1016/j.soildyn.2024.108653.
    [17] XIAO Y, YUAN Z X, CHU J, et al. Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression [J]. Acta Geotechnica, 2019, 14(6): 1741–1755. DOI: 10.1007/s11440-019-00790-1.
    [18] 吕亚茹, 吴琳, 王媛, 等. 玻璃球宏细观冲击特性的SHPB试验和耦合数值模拟研究 [J]. 工程力学, 2023, 40(6): 245–256. DOI: 10.6052/j.issn.1000-4750.2021.11.0857.

    LYU Y R, WU L WANG Y, et al. Macro and micro quantitative study on impact behavior of glass beadsby SHPB tests and FEM-DEM coupling analysis [J]. Engineering Mechanics, 2023, 40(6): 245–256. DOI: 10.6052/j.issn.1000-4750.2021.11.0857.
    [19] 陈榕, 武智勇, 郝冬雪, 等. 高应力下石英砂三轴剪切颗粒破碎演化规律及影响 [J]. 岩土工程学报, 2023, 45(8): 1713–1722. DOI: 10.11779/CJGE20220647.

    CHEN R, WU Z Y, HAO D X, et al. Evolution rules and effects of particle breakage for quartz sand in triaxial shear tests under high pressures [J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1713–1722. DOI: 10.11779/CJGE20220647.
    [20] 魏久淇, 王明洋, 邱艳宇, 等. 钙质砂动态力学特性试验研究 [J]. 振动与冲击, 2018, 37(24): 7–12. DOI: 10.13465/j.cnki.jvs.2018.24.002.

    WEI J Q, WANG M Y, QIU Y Y, et al. Impact compressive response of calcareous sand [J]. Journal of Vibration and Shock, 2018, 37(24): 7–12. DOI: 10.13465/j.cnki.jvs.2018.24.002.
    [21] 王博, 吕果, 李江. 考虑粒径对砂土宏细观剪切性质的试验研究 [J]. 岩土工程技术, 2023, 37(5): 618–622. DOI: 10.3969/j.issn.1007-2993.2023.05.017.

    WANG B, LV G, LI J. Experimental study on micro-macro shear properties of sand considering particle size [J]. Geotechnical Engineering Technique, 2023, 37(5): 618–622. DOI: 10.3969/j.issn.1007-2993.2023.05.017.
    [22] 孟敏强, 袁正鑫, 蒋翔. 钙质砂-石英砂单颗粒破碎-强度-尺寸效应试验研究 [J]. 中国科学: 技术科学, 2022, 52(7): 1035–1047. DOI: 10.1360/SST-2021-0241.

    MENG M Q, YUAN Z X, JIANG X. Experimental study of the single-particle crushing-strength-size effect of calcareous sand-quartz sand [J]. Scientia Sinica Technologica, 2022, 52(7): 1035–1047. DOI: 10.1360/SST-2021-0241.
    [23] 张季如, 陈敬鑫, 王磊, 等. 三轴剪切过程中排水条件对钙质砂颗粒破碎、变形和强度特性的影响 [J]. 岩土力学, 2024, 45(2): 375–384. DOI: 10.16285/j.rsm.2023.0243.

    ZHANG J R, CHEN J X, WANG L, et al. Effect of drainage conditions during triaxial shearing on particle breakage, deformation, and strength properties of calcareous sand [J]. Rock and Soil Mechanics, 2024, 45(2): 375–384. DOI: 10.16285/j.rsm.2023.0243.
    [24] YU X, REN W J, ZHOU B K, et al. Experimental study on the mechanical behavior and energy absorption capacity of coral sand at high strain rates [J]. Ocean Engineering, 2024, 291: 116343. DOI: 10.1016/j.oceaneng.2023.116343.
    [25] 卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术 [M]. 北京: 科学出版社, 2013.

    LU F Y, CHEN R, LIN Y L, et al. Hopkinson bar techniques [M]. Beijing: Science Press, 2013.
    [26] 李胜林, 刘殿书, 李祥龙, 等. ϕ75mm分离式霍普金森压杆试件长度效应的试验研究 [J]. 中国矿业大学学报, 2010, 39(1): 93–97.

    LI S L, LIU D S, LI X L, et al. The effect of specimen length in ϕ75 mm split Hopkinson pressure bar experiment [J]. Journal of China University of Mining & Technology, 2010, 39(1): 93–97.
    [27] HARDIN B O. Crushing of soil particles [J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177–1192. DOI: 10.1061/(ASCE)0733-9410(1985)111:10(1177.
    [28] ZHANG J M, DUAN M D, WANG D L, et al. Particle strength of calcareous sand in Nansha islands, south China sea [J]. Advances in Civil Engineering Materials, 2019, 8(1): 355–364. DOI: 10.1520/ACEM20180145.
    [29] KUANG D M, LONG Z L, GUO R Q, et al. Experimental and numerical investigation on size effect on crushing behaviors of single calcareous sand particles [J]. Marine Georesources & Geotechnology, 2021, 39(5): 543–553. DOI: 10.1080/1064119X.2020.1725194.
    [30] YANG J, LIU X. Shear wave velocity and stiffness of sand: the role of non-plastic fines [J]. Géotechnique, 2016, 66(6): 500–514. DOI: 10.1680/jgeot.15.p.205.
    [31] SHARMA S S, FAHEY M. Deformation characteristics of two cemented calcareous soils [J]. Canadian Geotechnical Journal, 2004, 41(6): 1139–1151. DOI: 10.1139/T04-066.
    [32] 彭宇, 丁选明, 肖杨, 等. 基于染色标定与图像颗粒分割的钙质砂颗粒破碎特性研究 [J]. 岩土力学, 2019, 40(7): 2663–2672. DOI: 10.16285/j.rsm.2018.0689.

    PENG Y, DING X M, XIAO Y, et al. Study of particle breakage behaviour of calcareous sand by dyeing tracking and particle image segmentation method [J]. Rock and Soil Mechanics, 2019, 40(7): 2663–2672. DOI: 10.16285/j.rsm.2018.0689.
    [33] EINAV I. Breakage mechanics—Part I: theory [J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274–1297. DOI: 10.1016/j.jmps.2006.11.003.
    [34] PETERS J F, MUTHUSWAMY M, WIBOWO J, et al. Characterization of force chains in granular material [J]. Physical Review E, 2005, 72(4): 041307. DOI: 10.1103/PhysRevE.72.041307.
    [35] SADREKARIMI A, OLSON S M. Particle damage observed in ring shear tests on sands [J]. Canadian Geotechnical Journal, 2010, 47(5): 497–515. DOI: 10.1139/T09-117.
    [36] 谢磊, 李庆华, 徐世烺. 超高韧性水泥基复合材料多次冲击压缩性能及本构关系 [J]. 工程力学, 2021, 38(12): 158–171. DOI: 10.6052/j.issn.1000-4750.2020.11.0860.

    XIE L, LI Q H, XU S L. Multiple impact compressive properties and constitutive model of ultra-high toughness cementitious composites [J]. Engineering Mechanics, 2021, 38(12): 158–171. DOI: 10.6052/j.issn.1000-4750.2020.11.0860.
    [37] MILTZ J, RAMON O. Energy absorption characteristics of polymeric foams used as cushioning materials [J]. Polymer Engineering and Science, 1990, 30(2): 129–133. DOI: 10.1002/pen.760300210.
  • 加载中
图(29)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  8
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-26
  • 修回日期:  2024-11-12
  • 网络出版日期:  2024-11-12

目录

    /

    返回文章
    返回