• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

冲击质量对方形锂离子电池在冲击载荷下动态力学响应和失效模式的影响

王涛 孟康培 刘跃专 袁泉 黄浩 陈晓平

王涛, 孟康培, 刘跃专, 袁泉, 黄浩, 陈晓平. 冲击质量对方形锂离子电池在冲击载荷下动态力学响应和失效模式的影响[J]. 爆炸与冲击, 2025, 45(2): 021423. doi: 10.11883/bzycj-2024-0316
引用本文: 王涛, 孟康培, 刘跃专, 袁泉, 黄浩, 陈晓平. 冲击质量对方形锂离子电池在冲击载荷下动态力学响应和失效模式的影响[J]. 爆炸与冲击, 2025, 45(2): 021423. doi: 10.11883/bzycj-2024-0316
WANG Tao, MENG Kangpei, LIU Yuezhuan, YUAN Quan, HUANG Hao, CHEN Xiaoping. Effects of impact mass on dynamic mechanical responses and failure modes of square lithium-ion batteries under impact loading[J]. Explosion And Shock Waves, 2025, 45(2): 021423. doi: 10.11883/bzycj-2024-0316
Citation: WANG Tao, MENG Kangpei, LIU Yuezhuan, YUAN Quan, HUANG Hao, CHEN Xiaoping. Effects of impact mass on dynamic mechanical responses and failure modes of square lithium-ion batteries under impact loading[J]. Explosion And Shock Waves, 2025, 45(2): 021423. doi: 10.11883/bzycj-2024-0316

冲击质量对方形锂离子电池在冲击载荷下动态力学响应和失效模式的影响

doi: 10.11883/bzycj-2024-0316
基金项目: 国家自然科学基金(12402457);宁波市自然科学基金(2023J389)
详细信息
    作者简介:

    王 涛(1978- ),男,硕士,高级实验师,wangtao@nbut.edu.cn

    通讯作者:

    陈晓平(1978- ),男,博士,教授,cxp@nbut.edu.cn

  • 中图分类号: O347

Effects of impact mass on dynamic mechanical responses and failure modes of square lithium-ion batteries under impact loading

  • 摘要: 电动汽车在运行过程中容易发生碰撞事故,动力锂离子电池不可避免会受到冲击作用,导致电池不同程度的损伤,而损伤程度的判断对电池的安全使用至关重要。基于上述背景,开展了不同冲击质量对方形锂离子电池动态冲击响应和失效行为影响的研究。首先,开展了准静态压缩试验,采用6种不同的进给速度对锂离子电池进行了挤压测试。试验结果显示,随着进给速度的递增,锂离子电池达到硬短路失效所需的峰值载荷持续减小。这表明,准静态条件下,锂离子电池的短路失效载荷主要由挤压速度决定。然后,开展了落锤冲击试验,通过调控冲头的质量和冲击速度,系统模拟了锂离子电池可能遭遇的多种冲击工况。研究结果表明,冲击质量和冲击速度是决定锂离子电池动态失效行为的关键因素。在冲击能量恒定的条件下,相较于高速、小质量的冲击条件,低速、大质量的冲头冲击对电芯内部造成的损伤更明显;当冲头质量不变时,提高冲击速度则会提前触发锂离子电池的内短路。
  • 图  1  用于测试的方形锂离子电池

    Figure  1.  A square lithium-ion battery used for testing

    图  2  Instron2386万能试验机

    Figure  2.  Instron2386 universal testing machine

    图  3  落重测试系统

    Figure  3.  Drop-weight test system

    图  4  不同进给速度对锂离子电池短路失效的影响

    Figure  4.  Influences of different feeding velocities on short-circuit failure of lithium-ion batteries

    图  5  硬短路失效点能量-进给速度拟合曲线

    Figure  5.  Fitted energy-feeding velocity curve of hard short circuit failure points

    图  6  图4中第2个波峰载荷与第1个波峰载荷之比随进给速度的变化

    Figure  6.  Ratio of the force at the second wave crest to the one at the first wave crest in Fig.4 varied with feeding velocity

    图  7  不同冲击速度和冲头质量的冲击试验中锂离子电池所受到的冲击力及其电压随时间的变化

    Figure  7.  Variation of impact force loaded on a lithium-ion battery and its voltage with time in drop-weight impact tests with different impact velocities and punch head masses

    图  8  在质量为28.50 kg的冲头以6.0 m/s的速度冲击下锂离子电池的结构及其受到的冲击力和电压随位移的变化

    Figure  8.  Battery structures as well as variations of impact forces loaded on batteries and their voltages with displacement under impact of a 28.50-kg punch head at the impact velocity of 6.0 m/s

    图  9  在质量为50.20 kg的冲头以6.0 m/s的速度冲击下锂离子电池的结构及其受到的冲击力和电压随位移的变化

    Figure  9.  Battery structures as well as variations of impact forces loaded on batteries and their voltages with displacement under impact of a 50.20-kg punch head at the impact velocity of 6.0 m/s

    图  10  在质量为71.80 kg的冲头以6.0 m/s的速度冲击下锂离子电池的结构及其受到的冲击力和电压随位移的变化

    Figure  10.  Battery structures as well as variations of impact forces loaded on batteries and their voltages with displacement under impact of a 71.80-kg punch head at the impact velocity of 6.0 m/s

    图  11  不同SOC的锂离子电池在质量为50.20 kg的冲头以5.0 m/s的速度冲击下所受到冲击力及其电压随时间的变化

    Figure  11.  Impact force- and voltage-time curves of lithium-ion batteries with different SOCs impacted by a 50.20-kg punch at 5.0 m/s

    图  12  在50.20 kg-5.0 m/s冲头的冲击下0.5 SOC锂离子电池结构的变形及其载荷和电压随位移的变化

    Figure  12.  Structure deformation of the lithium-ion battery with 0.5 SOC impacted by a 50.20-kg and 5.0-m/s punch as well as changes of load and voltage with displacement

    图  13  在不同质量、不同速度的冲头以恒定能量冲击下锂离子电池所受的冲击力及其电压随时间和位移的变化

    Figure  13.  Impact force and voltage of lithium-ion batteries subjected to constant impact energy from punches with different masses and different velocities

    图  14  在质量为139.50 kg的冲头以3.0 m/s的速度冲击下锂离子电池受到冲击力及其电压随时间的变化以及电芯中部和底部的XCT图像

    Figure  14.  Impact force- and voltage-time curves of the lithium-ion battery impacted by the 139.50-kg punch with the velocity of 3.0 m/s as well as XCT images for the battery cell middle and bottom

    图  15  在质量为78.45 kg的冲头以4.0 m/s的速度冲击下锂离子电池受到冲击力及其电压随时间的变化以及电芯中部和底部的XCT图像

    Figure  15.  Impact force- and voltage-time curves of the lithium-ion battery impacted by the 78.45-kg punch with the velocity of 4.0 m/s as well as XCT images for the battery cell middle and bottom

    图  16  在质量为50.20 kg的冲头以5.0 m/s的速度冲击下锂离子电池受到的冲击力及其电压随时间的变化以及电芯中部和底部的XCT图像

    Figure  16.  Impact force- and voltage-time curves of the lithium-ion battery impacted by the 50.20-kg punch with the velocity of 5.0 m/s as well as XCT images for the battery cell middle and bottom

    图  17  在质量为34.87 kg的冲头以6.0 m/s的速度冲击下锂离子电池受到冲击载荷及其电压随时间的变化以及电芯中部和底部的XCT图像

    Figure  17.  Impact force- and voltage-time curves of the lithium-ion battery impacted by the 34.87-kg punch with the velocity of 6.0 m/s as well as XCT images for the battery cell middle and bottom

    图  18  在质量为29.71 kg的冲头以6.5 m/s的速度冲击下锂离子电池受到冲击载荷及其电压随时间的变化以及电芯中部和底部的XCT图像

    Figure  18.  Impact force- and voltage-time curves of the lithium-ion battery impacted by the 29.71-kg punch with the velocity of 6.5 m/s as well as XCT images for the battery cell middle and bottom

    图  19  在不同冲击质量和不同冲击速度下的冲击载荷曲线及硬短路失效时间

    Figure  19.  Impact load profiles and hard short-circuit failure times at different impact masses and different impact velocities

    表  1  由冲击速度和落锤质量不同组合确定的冲击能量

    Table  1.   Impact energies determined by different combinations of impact velocity and hammer mass

    冲击速度/(m∙s−1) 下落高度/mm 冲击能量/J
    28.50 kg 50.20 kg 71.80 kg
    1.0 51 14.25 25.10 35.90
    2.0 204 57.00 100.40 143.60
    3.0 459 128.25 225.90 323.10
    4.0 817 228.00 401.60 574.40
    5.0 1276 356.25 627.50 897.50
    6.0 1838 513.00 903.60 1292.40
    下载: 导出CSV

    表  2  硬短路失效点的能量

    Table  2.   Energies at hard short circuit failure points

    进给速度/(mm∙min−1) 位移/mm 载荷/kN 失效点能量/J
    1 8.06 256.24 691.61
    10 8.40 252.49 794.16
    30 8.40 241.06 842.76
    50 8.76 169.57 912.06
    80 10.08 174.55 1036.69
    100 8.40 113.61 692.85
    下载: 导出CSV

    表  3  恒定冲击能量下的不同冲击速度、落锤初始高度和冲击质量

    Table  3.   Different impact velocities, initial drop height and impact masses at constant impact energy

    冲击能量/J 冲击速度/(m∙s−1) 落锤初始高度/mm 冲击质量/kg
    627.75 3.0 459 139.50
    627.60 4.0 817 78.45
    627.50 5.0 1276 50.20
    627.66 6.0 1838 34.87
    627.62 6.5 2179 29.71
    下载: 导出CSV

    表  4  恒定冲击能量下冲击试验的峰值载荷和硬短路失效时间点

    Table  4.   Peak loads and hard short-circuit failure time points for impact tests at constant impact energy

    冲击速度/(m∙s−1)冲击质量/kg峰值载荷/kN硬短路失效时间/ms
    3.0139.50164.433.79
    4.078.45127.602.36
    5.050.2099.461.87
    6.034.8737.601.39
    6.529.7125.401.27
    下载: 导出CSV
  • [1] LIU B H, JIA Y K, YUAN C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review [J]. Energy Storage Materials, 2020, 24: 85–112. DOI: 10.1016/j.ensm.2019.06.036.
    [2] XIA Y, WIERZBICKI T, SAHRAEI E, et al. Damage of cells and battery packs due to ground impact [J]. Journal of Power Sources, 2014, 267: 78–97. DOI: 10.1016/j.jpowsour.2014.05.078.
    [3] XU J, LIU B H, WANG X Y, et al. Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies [J]. Applied Energy, 2016, 172: 180–189. DOI: 10.1016/j.apenergy.2016.03.108.
    [4] XU J, LIU B H, WANG L B, et al. Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing [J]. Engineering Failure Analysis, 2015, 53: 97–110. DOI: 10.1016/j.engfailanal.2015.03.025.
    [5] JIA Y K, YIN S, LIU B H, et al. Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading [J]. Energy, 2019, 166: 951–960. DOI: 10.1016/j.energy.2018.10.142.
    [6] KISTERS T, SAHRAEI E, WIERZBICKI T. Dynamic impact tests on lithium-ion cells [J]. International Journal of Impact Engineering, 2017, 108: 205–216. DOI: 10.1016/j.ijimpeng.2017.04.025.
    [7] KISTERS T, GILAKI M, NAU S, et al. Modeling of dynamic mechanical response of Li-ion cells with homogenized electrolyte-solid interactions [J]. Journal of Energy Storage, 2022, 49: 104069. DOI: 10.1016/j.est.2022.104069.
    [8] RATNER A, BEAUMONT R, MASTERS I. Dynamic mechanical compression impulse of lithium-ion pouch cells [J]. Energies, 2020, 13(8): 2105. DOI: 10.3390/en13082105.
    [9] CHEN X P, WANG T, ZHANG Y, et al. Dynamic behavior and modeling of prismatic lithium-ion battery [J]. International Journal of Energy Research, 2020, 44(4): 2984–2997. DOI: 10.1002/er.5126.
    [10] CHEN X P, WANG T, ZHANG Y, et al. Dynamic mechanical behavior of prismatic lithium-ion battery upon impact [J]. International Journal of Energy Research, 2019, 43: 7421–7432. DOI: 10.1002/er.4774.
    [11] KOTTER P, KISTERS T, SCHLEICHER A. Dynamic impact tests to characterize the crashworthiness of large-format lithium-ion cells [J]. Journal of Energy Storage, 2019, 26: 100948. DOI: 10.1016/j.est.2019.100948.
    [12] HU L L, ZHANG Z W, ZHOU M Z, et al. Crushing behaviors and failure of packed batteries [J]. International Journal of Impact Engineering, 2020, 143: 103618. DOI: 10.1016/j.ijimpeng.2020.103618.
    [13] SAHRAEI E, KAHN M, MEIER J, et al. Modelling of cracks developed in lithium-ion cells under mechanical loading [J]. RSC Advances, 2015, 5(98): 80369–80380. DOI: 10.1039/c5ra17865g.
    [14] WANG H, SIMUNOVIC S, MALEKI H, et al. Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit [J]. Journal of Power Sources, 2016, 306: 424–430. DOI: 10.1016/j.jpowsour.2015.12.026.
    [15] CHUNG S H, TANCOGNE-DEJEAN T, ZHU J E, et al. Failure in lithium-ion batteries under transverse indentation loading [J]. Journal of Power Sources, 2018, 389: 148–159. DOI: 10.1016/j.jpowsour.2018.04.003.
    [16] ZHU X Q, WANG H, WANG X, et al. Internal short circuit and failure mechanisms of lithium-ion pouch cells under mechanical indentation abuse conditions: an experimental study [J]. Journal of Power Sources, 2020, 455: 227939. DOI: 10.1016/j.jpowsour.2020.227939.
    [17] ZHU F, ZHOU R Z, SYPECK D, et al. Failure behavior of prismatic Li-ion battery cells under abuse loading condition: a combined experimental and computational study [J]. Journal of Energy Storage, 2022, 48: 103969. DOI: 10.1016/j.est.2022.103969.
    [18] LI W, XING B B, WATKINS T R, et al. Damage of prismatic lithium-ion cells subject to bending: test, model, and detection [J]. EcoMat, 2022, 4(6): e12257. DOI: 10.1002/eom2.12257.
    [19] XING B B, XIAO F Y, KOROGI Y, et al. Direction-dependent mechanical-electrical-thermal responses of large-format prismatic Li-ion battery under mechanical abuse [J]. Journal of Energy Storage, 2021, 43: 103270. DOI: 10.1016/j.est.2021.103270.
    [20] WANG L B, CHEN J Y, LI J P, et al. A novel anisotropic model for multi-stage failure threshold of lithium-ion battery subjected to impact loading [J]. International Journal of Mechanical Sciences, 2022, 236: 107757. DOI: 10.1016/j.ijmecsci.2022.107757.
    [21] KISTERS T, KUDER J, TÖPEL A, et al. Strain-rate dependence of the failure behavior of lithium-ion pouch cells under impact loading [J]. Journal of Energy Storage, 2021, 41: 102901. DOI: 10.1016/j.est.2021.102901.
    [22] LIU Y J, XIA Y, XING B B, et al. Mechanical-electrical-thermal responses of lithium-ion pouch cells under dynamic loading: a comparative study between fresh cells and aged ones [J]. International Journal of Impact Engineering, 2022, 166: 104237. DOI: 10.1016/j.ijimpeng.2022.104237.
    [23] LI W, ZHU J E, XIA Y, et al. Data-driven safety envelope of lithium-ion batteries for electric vehicles [J]. Joule, 2019, 3(11): 2703–2715. DOI: 10.1016/j.joule.2019.07.026.
    [24] CHEN X P, YUAN Q, WANG T, et al. Experimental study on the dynamic behavior of prismatic lithium-ion battery upon repeated impact [J]. Engineering Failure Analysis, 2020, 115: 104667. DOI: 10.1016/j.engfailanal.2020.104667.
    [25] ZHANG H J, ZHOU M Z, HU L L, et al. Mechanism of the dynamic behaviors and failure analysis of lithium-ion batteries under crushing based on stress wave theory [J]. Engineering Failure Analysis, 2020, 108: 104290. DOI: 10.1016/j.engfailanal.2019.104290.
    [26] KALNAUS S, WANG H, WATKINS T R, et al. Features of mechanical behavior of EV battery modules under high deformation rate [J]. Extreme Mechanics Letters, 2019, 32: 100550. DOI: 10.1016/j.eml.2019.100550.
    [27] 李志杰. 新能源汽车方形锂离子电池内部芯层载荷变形失效试验与仿真分析 [D]. 广州: 华南理工大学, 2021. DOI: 10.27151/d.cnki.ghnlu.2021.001195.

    LI Z J. Load deformation failure test and simulation analysis for internal configuration of prismatic lithium-ion batteries on new energy vehicle [D]. Guangzhou: South China University of Technology, 2021. DOI: 10.27151/d.cnki.ghnlu.2021.001195.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  31
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-29
  • 修回日期:  2024-12-20
  • 网络出版日期:  2024-12-25
  • 刊出日期:  2025-02-01

目录

    /

    返回文章
    返回