数据驱动的动力电池包侧面柱碰撞安全性预测方法

马骋浩 庄梓傲 SHINJonghyeon 邢伯斌 夏勇 周青

马骋浩, 庄梓傲, SHINJonghyeon, 邢伯斌, 夏勇, 周青. 数据驱动的动力电池包侧面柱碰撞安全性预测方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0318
引用本文: 马骋浩, 庄梓傲, SHINJonghyeon, 邢伯斌, 夏勇, 周青. 数据驱动的动力电池包侧面柱碰撞安全性预测方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0318
MA Chenghao, ZHUANG Ziao, SHIN Jonghyeon, XING Bobin, XIA Yong, ZHOU Qing. Data-driven safety prediction of battery pack under side pole collision[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0318
Citation: MA Chenghao, ZHUANG Ziao, SHIN Jonghyeon, XING Bobin, XIA Yong, ZHOU Qing. Data-driven safety prediction of battery pack under side pole collision[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0318

数据驱动的动力电池包侧面柱碰撞安全性预测方法

doi: 10.11883/bzycj-2024-0318
详细信息
    作者简介:

    马骋浩(2002- ),男,博士研究生,mch23@mails.tsinghua.edu.cn

    通讯作者:

    夏 勇(1976- ),男,博士,副研究员,xiayong@tsinghua.edu.cn

  • 中图分类号: O383; U469.72

Data-driven safety prediction of battery pack under side pole collision

  • 摘要: 电动汽车电池包在侧面柱碰撞下极易失效并可能发生着火。为准确、快速地评估电池包在侧面柱碰撞下安全性,采用区域细化的电池包模型,在不同的碰撞速度、碰撞角度、碰撞位置和车辆装载状态下开展了仿真分析,采用优化拉丁超立方采样策略设计了仿真矩阵,并通过图像识别的方法批量提取电池包碰撞响应生成数据集。对研究参数进行组合生成了新特征,并对参数进行相关性分析,确定了模型训练的输入特征。采用支持向量机、随机森林方法和误差反向传播神经网络(back propagation neural network, BPNN)机器学习方法建立了数据驱动的预测模型。结果表明,支持向量机模型性能最优,模型预测参数的平均决定系数R2为0.96。在训练数据集中引入标准差不同的高斯噪声,对模型的鲁棒性进行了检验,误差BPNN机器学习方法的鲁棒性较优。采用建立的数据驱动模型能够预测电池包侧面柱碰撞下的变形情况,评估电池包的碰撞安全性。
  • 图  1  仿真模型和设置

    Figure  1.  Simulation model and configuration

    图  2  不同电池模组模型

    Figure  2.  Different types of battery model module

    图  3  优化拉丁超立方采样生成的仿真矩阵样本分布

    Figure  3.  Sample distribution of simulation matrix generated by optimized Latin hypercube sampling

    图  4  电池包侧面柱碰撞仿真结果

    Figure  4.  Simulation result of battery pack side pole collision

    图  5  电池包仿真结果后处理示意图

    Figure  5.  Schematic diagram of post-processing of battery pack simulation results

    图  6  Pearson相关系数分析热力图

    Figure  6.  Pearson correlation coefficient analysis heat map

    图  7  数据驱动模型建立流程图

    Figure  7.  Data-driven model building flowchart

    图  8  随机森林模型预测结果与仿真结果的比较

    Figure  8.  Comparison between RF model prediction results and simulation results

    图  9  支持向量机模型预测结果与仿真结果的比较

    Figure  9.  Comparison between SVM model prediction results and simulation results

    图  10  BP神经网络模型预测结果与仿真结果的比较

    Figure  10.  Comparison between BPNN model prediction results and simulation results

    图  11  增加高斯噪声后机器学习模型预测效果

    Figure  11.  Machine learning model prediction after adding Gaussian noise

    表  1  机器学习模型超参数组合

    Table  1.   Machine learning model hyperparameter selection

    算法超参数取值
    随机森林随机森林中树的数量100
    树的最大深度None
    分割内部节点所需的最小样本数2
    叶子结点上所需的最小样本数1
    支持向量机回归模型的惩罚程度100
    误差惩罚边界0.5
    核函数‘rbf’
    BP神经网络各隐藏层中的神经元数目(50,50)
    激活函数‘identity’
    下载: 导出CSV

    表  2  机器学习模型预测效果

    Table  2.   Accuracy analysis of ML models

    机器学习模型预测参数R2MSE/mm2RMSE/mmMAE/mmMAPE/%
    随机森林Xmax0.931292.479.6167.3521.009
    I10.956933.025.7474.5945.043
    W0.9440589.624.2817.634.312
    I20.95403.9541.9891.338130.5
    支持向量机Xmax0.964048.386.9555.1950.7235
    I10.983912.333.5122.5562.946
    W0.9373659.825.6918.734.656
    I20.96363.1271.7681.416306.4
    BP神经网络Xmax0.967843.276.5785.2330.7151
    I10.969423.464.8433.8264.110
    W0.9483544.423.3318.554.424
    I20.88499.8983.1462.573591.2
    下载: 导出CSV

    表  3  为所有训练集数据添加噪声($\sigma=0.5 $)后各类机器学习模型预测效果

    Table  3.   Accuracy analysis of ML models after adding Gaussian noise ($\sigma=0.5 $) to all training data

    机器学习模型 预测参数 R2 MSE/mm2 RMSE/mm MAE/mm MAPE/%
    随机森林 Xmax 0.9171 111.4 10.55 8.762 1.208
    I1 0.8941 81.15 9.008 7.553 8.525
    W 0.8498 1580 39.75 32.22 7.576
    I2 0.9358 5.515 2.349 1.695 179.3
    支持向量机 Xmax 0.9097 121.4 11.02 8.363 1.156
    I1 0.9286 54.75 7.399 5.739 6.241
    W 0.8989 1063 32.61 24.45 5.935
    I2 0.8638 11.71 3.422 2.806 732.7
    BP神经网络 Xmax 0.9308 92.95 9.641 7.958 1.084
    I1 0.9415 44.81 6.694 5.524 6.110
    W 0.9084 964.3 31.05 24.88 5.831
    I2 0.8673 11.41 3.377 2.831 575.7
    下载: 导出CSV
  • [1] CHEN P W, XIA Y, ZHOU Q. Inclined battery cells for mitigating damage in undercarriage collision [J]. International Journal of Crashworthiness, 2024, 29(3): 508–520. DOI: 10.1080/13588265.2023.2258645.
    [2] LI W, XIA Y, CHEN G H, et al. Comparative study of mechanical-electrical-thermal responses of pouch, cylindrical, and prismatic lithium-ion cells under mechanical abuse [J]. Science China Technological Sciences, 2018, 61(10): 1472–1482. DOI: 10.1007/s11431-017-9296-0.
    [3] LAI W J, ALI M Y, PAN J. Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions [J]. Journal of Power Sources, 2014, 248: 789–808. DOI: 10.1016/j.jpowsour.2013.09.128.
    [4] SAHRAEI E, BOSCO E, DIXON B, et al. Microscale failure mechanisms leading to internal short circuit in Li-ion batteries under complex loading scenarios [J]. Journal of Power Sources, 2016, 319: 56–65. DOI: 10.1016/j.jpowsour.2016.04.005.
    [5] SAHRAEI E, CAMPBELL J, WIERZBICKI T. Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions [J]. Journal of Power Sources, 2012, 220: 360–372. DOI: 10.1016/j.jpowsour.2012.07.057.
    [6] XIAO F Y, XING B B, XIA Y. Mechanical response of laterally-constrained prismatic battery cells under local loading: SAE Technical Paper 2020-01-0200 [R]. SAE, 2020. DOI: 10.4271/2020-01-0200.
    [7] XIA Y, WIERZBICKI T, SAHRAEI E, et al. Damage of cells and battery packs due to ground impact [J]. Journal of Power Sources, 2014, 267: 78–97. DOI: 10.1016/j.jpowsour.2014.05.078.
    [8] KUKREJA J, NGUYEN T, SIEGMUND T, et al. Crash analysis of a conceptual electric vehicle with a damage tolerant battery pack [J]. Extreme Mechanics Letters, 2016, 9: 371–378. DOI: 10.1016/j.eml.2016.05.004.
    [9] ZHANG J Y, NING L N, HAO Y M, et al. Topology optimization for crashworthiness and structural design of a battery electric vehicle [J]. International Journal of Crashworthiness, 2021, 26(6): 651–660. DOI: 10.1080/13588265.2020.1766644.
    [10] CHEN P W, XIA Y, ZHOU Q, et al. Staggered layout of battery cells for mitigating damage in side pole collisions of electric vehicles [J]. eTransportation, 2023, 16: 100238. DOI: 10.1016/j.etran.2023.100238.
    [11] LI W, ZHU J E, XIA Y, et al. Data-driven safety envelope of lithium-ion batteries for electric vehicles [J]. Joule, 2019, 3(11): 2703–2715. DOI: 10.1016/j.joule.2019.07.026.
    [12] ZHANG Z, ZHOU H P, MA J Y, et al. Space deployable bistable composite structures with C-cross section based on machine learning and multi-objective optimization [J]. Composite Structures, 2022, 297: 115983. DOI: 10.1016/j.compstruct.2022.115983.
    [13] PAN Y J, ZHANG X X, LIU Y, et al. Dynamic behavior prediction of modules in crushing via FEA-DNN technique for durable battery-pack system design [J]. Applied Energy, 2022, 322: 119527. DOI: 10.1016/j.apenergy.2022.119527.
    [14] XU D X, PAN Y J, ZHANG X X, et al. Data-driven modelling and evaluation of a battery-pack system’s mechanical safety against bottom cone impact [J]. Energy, 2024, 290: 130145. DOI: 10.1016/J.ENERGY.2023.130145.
    [15] 中国汽车技术研究中心有限公司. C-NCAP管理规则(2024版) [R/OL]. 天津, 2024. https://www.c-ncap.org.cn/article-detail/1747900203303780353?type=2.

    China Automotive Technology and Research Center Co. , Ltd. C-NCAP management rules (2024 Edition) [R/OL]. Tianjin, 2024. https://www.c-ncap.org.cn/article-detail/1747900203303780353?type=2.
    [16] 国家市场监督管理总局, 国家标准化管理委员会. 汽车侧面柱碰撞的乘员保护: GB/T 37337-2019 [S]. 北京: 中国标准出版社, 2019.

    State Administration of Market Supervision and Administration of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Protection of the occupants in the event of a lateral pole collision: GB/T 37337-2019 [S]. Beijing: Standards Press of China, 2019.
    [17] 马骋浩, 申宗玹, 汪俊, 等. 侧面柱碰撞工况电池包碰撞安全性快速预测 [J]. 汽车工程, 2024.

    MA C H, SHEN Z X, WANG J, et al. Fast prediction of battery pack safety under side pole collision [J]. Automotive Engineering, 2024.
    [18] QU Y L, GE Y L, XING B B, et al. Development of detailed model and simplified model of lithium-ion battery module under mechanical abuse: SAE Technical Paper 2022-01-7120 [R]. SAE, 2022. DOI: 10.4271/2022-01-7120.
    [19] 陈涛, 李宁宁, 李卓, 等. 侧面柱碰撞条件下电动汽车电池系统结构优化 [J]. 中国机械工程, 2020, 31(9): 1021–1030. DOI: 10.3969/j.issn.1004-132X.2020.09.002.

    CHEN T, LI N N, LI Z, et al. Structural optimization of electric vehicle battery systems under pole side impacts [J]. China Mechanical Engineering, 2020, 31(9): 1021–1030. DOI: 10.3969/j.issn.1004-132X.2020.09.002.
    [20] YI J, LI X Y, XIAO M, et al. Construction of nested maximin designs based on successive local enumeration and modified novel global harmony search algorithm [J]. Engineering Optimization, 2017, 49(1): 161–180. DOI: 10.1080/0305215X.2016.1170825.
    [21] RAUTELA M, GOPALAKRISHNAN S. Ultrasonic guided wave based structural damage detection and localization using model assisted convolutional and recurrent neural networks [J]. Expert Systems with Applications, 2021, 167: 114189. DOI: 10.1016/j.eswa.2020.114189.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  69
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-31
  • 修回日期:  2024-10-16
  • 网络出版日期:  2024-10-18

目录

    /

    返回文章
    返回