轻型消费级无人机软包锂离子电池在机械强冲击载荷下的力学响应特性

郭亚周 刘小川 白春玉 王计真

郭亚周, 刘小川, 白春玉, 王计真. 轻型消费级无人机软包锂离子电池在机械强冲击载荷下的力学响应特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0320
引用本文: 郭亚周, 刘小川, 白春玉, 王计真. 轻型消费级无人机软包锂离子电池在机械强冲击载荷下的力学响应特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0320
GUO Yazhou, LIU Xiaochuan, BAI Chunyu, WANG Jizhen. Dynamic response characteristics of soft-pack lithium batteries for light consumer drones under mechanical strong impact loads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0320
Citation: GUO Yazhou, LIU Xiaochuan, BAI Chunyu, WANG Jizhen. Dynamic response characteristics of soft-pack lithium batteries for light consumer drones under mechanical strong impact loads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0320

轻型消费级无人机软包锂离子电池在机械强冲击载荷下的力学响应特性

doi: 10.11883/bzycj-2024-0320
详细信息
    作者简介:

    郭亚周(1994- ),男,硕士,工程师,guoyazhou623@163.com

    通讯作者:

    刘小川(1983- ),男,博士,研究员,liuxiaochuan@cae.ac.cn

  • 中图分类号: O389; V214.8

Dynamic response characteristics of soft-pack lithium batteries for light consumer drones under mechanical strong impact loads

  • 摘要: 为研究轻型消费级无人机锂离子电池在高能量冲击下的动响应模式及爆炸着火特性,评估锂离子电池在动态冲击时的安全性能,以某轻型消费级无人机软包锂离子电池为研究对象,采用落锤冲击及气炮冲击实验方法,结合轻型无人机实际应用场景分别开展了软包电池组落锤冲击及电池高速冲击铝板测试实验,探讨不同电池电量的软包电池组在受冲击后的变形模式及着火情况,结合电池的机械变形响应及其着火演化特性分析了软包锂离子电池的冲击安全性。研究结果表明,轻型消费级无人机软包锂离子电池在常规电池外壳防护的条件下受面外方向载荷冲击后的着火风险高于面内方向载荷冲击后的着火风险;锂离子电池着火风险与电池电量、冲击速度等具有明显相关性,锂离子电池本身的力学响应主要受自身材料及结构影响,电池电量并不会影响电池的机械力学碰撞响应;本文中所采用的锂离子电池样本在电池电量为 100% 时以 50 m/s 的速度撞击铝板以及电池电量为 50% 以下时以 85 m/s 速度撞击铝板后燃烧风险均相对较低。
  • 图  1  实验用锂离子电池

    Figure  1.  Lithium-ion batteries used in experiments

    图  2  落锤冲击实验装置

    Figure  2.  Drop-weight impact experimental device

    图  3  高速气炮冲击实验装置

    Figure  3.  High-speed gas-gun impact experimental device

    图  4  电池及弹托

    Figure  4.  Battery and sabot

    图  5  防护箱及应变片布置

    Figure  5.  Protective box and layout of strain gauges

    图  6  面外落锤冲击实验锂离子电池变形响应过程

    Figure  6.  Deformation response process of in out-of-plane drop-weight experiment

    图  7  面内气炮冲击实验锂离子电池变形响应过程

    Figure  7.  Deformation response process of in in-plane gas gun impact experiment

    图  8  100%充电状态电池在200 J冲击后的形貌

    Figure  8.  Morphologies of batteries with 100% state of charge after impact of 200 J

    图  9  面外落锤冲击下不同电量电池受碰撞的形貌

    Figure  9.  Morphologies of batteries with different states of charge after out-of-plane drop-hammer impact

    图  10  面内气炮冲击条件下电池受碰撞响应

    Figure  10.  Morphologies of batteries with different states of charge after under in-plane gas-gun impact

    图  11  不同电量电池受落锤撞击力随时间的变化

    Figure  11.  Impact force of punch on batteries with different capacities varying with time

    图  12  不同电量电池气炮冲击铝板典型部位应变

    Figure  12.  Typical strain of aluminum plate impacted by gas cannon in different electric quantity

    图  13  不同速度电池撞击2 mm厚铝板后的形貌

    Figure  13.  Response of batteries impacting 2-mm-thickness aluminum plate at different velocities

    图  14  2 mm厚铝板受不同速度电池撞击后形貌

    Figure  14.  Response of 2-mm-thickness aluminum plate to battery impact at different velocities

    图  15  不同速度撞击下铝板受电池撞击典型部位应变随时间的变化

    Figure  15.  Strain-time curves of typical parts at aluminum plates impacted by batteries at different velocities

    表  1  实验用锂离子电池参数

    Table  1.   Parameters of lithium-ion batteries used in experiments

    电池类型标称电压/V充电限制电压/V尺寸/mm质量/g
    电池单体3.854.4065.0×45.0×8.561.5
    整颗电池15.4017.6097.0×60.0×43.0294.0
    下载: 导出CSV

    表  2  面外落锤冲击实验工况

    Table  2.   Conditions for out-of-plane drop-weight impact experiments

    试件电池充电状态/%冲击能量/J
    整颗电池D10200
    整颗电池D250200
    整颗电池D3100200
    下载: 导出CSV

    表  3  面内气炮冲击实验工况

    Table  3.   Conditions for in-plane gas gun impact experiments

    试件电池充电状态/%铝板厚度/mm冲击能量/J冲击速度/
    整颗电池D4051 06285
    整颗电池D55051 06285
    整颗电池D610051 06285
    整颗电池D7100220137
    整颗电池D8100236850
    整颗电池D9100252960
    整颗电池D1010021 06285
    下载: 导出CSV
  • [1] CHEN X, ZOU Q, BAI J, et al. An information integration technology for safety assessment on civil airborne system [J]. Aerospace, 2024, 11(6): 459. DOI: 10.3390/AEROSPACE11060459.
    [2] ZHANG H H, TIAN T, FENG O G, et al. Research on public air route network planning of urban low-altitude logistics unmanned aerial vehicles [J]. Sustainability, 2023, 15(15): 12021. DOI: 10.3390/SU151512021.
    [3] FAN J J, FAN L L, NI Q H, et al. Perception and planning of intelligent vehicles based on BEV in extreme off-road scenarios [J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(4): 4568–4572. DOI: 10.1109/TIV.2024.3392753.
    [4] 余莎莎, 陈艺君, 张学军. 城市低空场景下无人机运行对地风险量化评估 [J]. 北京航空航天大学学报, DOI: 10.13700/j.bh.1001-5965.2024.0244.

    YU S S, CHEN Y J, ZHANG X J. Urban low scenario drone operation of quantitative risk assessment [J]. Journal of Beijing University of Aeronautics and Astronautics, DOI: 10.13700/j.bh.1001-5965.2024.0244.
    [5] 韩鹏, 赵嶷飞, 刘宏. 无人机地面撞击风险评估体系构建及趋势展望 [J]. 中国民航大学学报, 2021, 39(1): 40–47. DOI: 10.3969/j.issn.1674-5590.2021.01.008.

    HAN P, ZHAO Y F, LIU H. Assessment system construction and trend foresight of UAV ground impact risk [J]. Journal of Civil Aviation University of China, 2021, 39(1): 40–47. DOI: 10.3969/j.issn.1674-5590.2021.01.008.
    [6] XIA C Y, YANG C R, XUE K, et al. A conflict risk analysis of MAV\UAV Flight in shared airspace [J]. International Journal of Aerospace Engineering, 2021, 2021(1): 1692896. DOI: 10.1155/2021/1692896.
    [7] 郭亚周, 刘小川, 郭军, 等. 微型无人机和鸟体撞击飞机风挡玻璃对比实验 [J]. 实验力学, 2020, 35(1): 167–173. DOI: 10.7520/1001-4888-18-111.

    GUO Y Z, LIU X C, GUO J, et al. Comparative experiment of aircraft windshield glass subjected to micro-UAV and bird body impact [J]. Journal of Experimental Mechanics, 2020, 35(1): 167–173. DOI: 10.7520/1001-4888-18-111.
    [8] MEIER J D. Material characterization of high-voltage lithium-ion battery models for crashworthiness analysis [D]. Cambridge: Massachusetts Institute of Technology, 2013.
    [9] ZHANG X W, SAHRAEI E, WANG K. Deformation and failure characteristics of four types of lithium-ion battery separators [J]. Journal of Power Sources, 2016, 327: 693–701. DOI: 10.1016/j.jpowsour.2016.07.078.
    [10] 朱瑞卿, 胡玲玲, 周名哲. 锂离子电池多次冲击下的失效模式及损伤机制 [J]. 固体力学学报, 2023, 44(6): 795–804. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.032.

    ZHU R Q, HU L L, ZHOU M Z. Failure modes and damage mechanisms of lithium-ion batteries under repeated impacts [J]. Chinese Journal of Solid Mechanics, 2023, 44(6): 795–804. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.032.
    [11] JIA Y K, YIN S, LIU B H, et al. Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading [J]. Energy, 2019, 166: 951–960. DOI: 10.1016/j.energy.2018.10.142.
    [12] ZHU J E, KOCH M M, LIAN J H, et al. Mechanical deformation of lithium-ion pouch cells under in-plane loads: Part I: experimental investigation [J]. Journal of the Electrochemical Society, 2020, 167(9): 090533. DOI: 10.1149/1945-7111/ab8e83.
    [13] PAN Z X, LI W, XIA Y. Experiments and 3D detailed modeling for a pouch battery cell under impact loading [J]. Journal of Energy Storage, 2020, 27: 101016. DOI: 10.1016/j.est.2019.101016.
    [14] ZHU J E, LI W, WIERZBICKI T, et al. Deformation and failure of lithium-ion batteries treated as a discrete layered structure [J]. International Journal of Plasticity, 2019, 121: 293–311. DOI: 10.1016/j.ijplas.2019.06.011.
    [15] CHEN X P, WANG T, ZHANG Y, et al. Dynamic mechanical behavior of prismatic lithium-ion battery upon impact [J]. International Journal of Energy Research, 2019, 43(13): 7421–7432. DOI: 10.1002/er.4774.
    [16] ZHANG X W, WIERZBICKI T. Characterization of plasticity and fracture of shell casing of lithium-ion cylindrical battery [J]. Journal of Power Sources, 2015, 280: 47–56. DOI: 10.1016/j.jpowsour.2015.01.077.
    [17] WIERZBICKI T, SAHRAEI E. Homogenized mechanical properties for the jellyroll of cylindrical lithium-ion cells [J]. Journal of Power Sources, 2013, 241: 467–476. DOI: 10.1016/j.jpowsour.2013.04.135.
    [18] SAHRAEI E, KAHN M, MEIER J, et al. Modelling of cracks developed in lithium-ion cells under mechanical loading [J]. RSC Advances, 2015, 5(98): 80369–80380. DOI: 10.1039/C5RA17865G.
    [19] LI H G, GU J H, PAN Y J, et al. On the strain rate-dependent mechanical behavior of PE separator for lithium-ion batteries [J]. International Journal of Impact Engineering, 2024, 194: 105079. DOI: 10.1016/j.ijimpeng.2024.105079.
    [20] LI H G, GU J H, ZHOU D, et al. Rate-dependent damage and failure behavior of lithium-ion battery electrodes [J]. Engineering Fracture Mechanics, 2024, 303: 110143. DOI: 10.1016/j.engfracmech.2024.110143.
    [21] LI H G, ZHOU D, ZHANG M H, et al. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse [J]. Energy, 2023, 263: 126027. DOI: 10.1016/j.energy.2022.126027.
    [22] ZHOU D, LI H G, LI Z H, et al. Toward the performance evolution of lithium-ion battery upon impact loading [J]. Electrochimica Acta, 2022, 432: 141192. DOI: 10.1016/j.electacta.2022.141192.
    [23] Olivares G. FAA sUAS COE task A3 UAS airborne collision hazard severity evaluation [R]. Washington: FAA, 2017. DOI: 10.13140/RG.2.2.30840.08968.
    [24] 郭亚周, 刘小川, 白春玉, 等. 轻小型无人机锂离子电池在冲击载荷下机械/电化学耦合失效特性试验 [J]. 科学技术与工程, 2022, 22(31): 14002–14010. DOI: 10.3969/j.issn.1671-1815.2022.31.049.

    GUO Y Z, LIU X C, BAI C Y, et al. Mechanical/electrochemical coupling failure characteristics tests of light and small UAVs lithium battery under impact load [J]. Science Technology and Engineering, 2022, 22(31): 14002–14010. DOI: 10.3969/j.issn.1671-1815.2022.31.049.
    [25] MENG X H, SUN Y J, YU J Y, et al. Dynamic response of the horizontal stabilizer during UAS airborne collision [J]. International Journal of Impact Engineering, 2019, 126: 50–61. DOI: 10.1016/j.ijimpeng.2018.11.015.
    [26] 刘新华, 郭斌, 何瑢, 等. 轻型无人机电池动态冲击性能研究 [J]. 机械工程学报, 2023, 59(2): 177–186. DOI: 10.3901/JME.2023.02.177.

    LIU X H, GUO B, HE R, et al. Research on dynamic impact performance of light-UAV battery [J]. Journal of Mechanical Engineering, 2023, 59(2): 177–186. DOI: 10.3901/JME.2023.02.177.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  17
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-31
  • 修回日期:  2024-12-03
  • 网络出版日期:  2024-12-04

目录

    /

    返回文章
    返回