• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

陶瓷材料I型动态断裂韧性的新型测试方法

蔡治城 许泽建 范昌增 武刚 黄风雷

蔡治城, 许泽建, 范昌增, 武刚, 黄风雷. 陶瓷材料I型动态断裂韧性的新型测试方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0324
引用本文: 蔡治城, 许泽建, 范昌增, 武刚, 黄风雷. 陶瓷材料I型动态断裂韧性的新型测试方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0324
CAI Zhicheng, XU Zejian, FAN Changzeng, WU Gang, HUANG Fenglei. A new test method for mode I dynamic fracture toughness of ceramic materials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0324
Citation: CAI Zhicheng, XU Zejian, FAN Changzeng, WU Gang, HUANG Fenglei. A new test method for mode I dynamic fracture toughness of ceramic materials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0324

陶瓷材料I型动态断裂韧性的新型测试方法

doi: 10.11883/bzycj-2024-0324
基金项目: 爆炸科学与安全防护全国重点实验室基金项目(QNKT21-5)
详细信息
    作者简介:

    蔡治城(2000- ),男,硕士研究生,czcturbo@163.com

    通讯作者:

    许泽建(1979- ),男,博士,教授,xuzejian@bit.edu.cn

  • 中图分类号: O347.3; TB321; TG115.5+7

A new test method for mode I dynamic fracture toughness of ceramic materials

  • 摘要: 基于霍普金森压杆技术,采用新设计的微型纯Ⅰ型断裂试样和配套夹具,提出了一种针对陶瓷材料的新型动态断裂测试方法,试样的起裂时间由应变片法测得;对氧化铝陶瓷开展了不同加载速率下的动态断裂实验,采用实验-数值方法得到了材料的Ⅰ型动态应力强度因子曲线及动态断裂韧性。结果显示:随着加载速率从0.45 TPa·m1/2·s−1提高到1.83 TPa·m1/2·s−1,氧化铝陶瓷的Ⅰ型动态断裂韧性值由8.39 MPa·m1/2增加至15.76 MPa·m1/2,而起裂时间则随着加载速率的增加而不断提前。由断口分析可知,随着加载速率的增加,氧化铝陶瓷由沿晶断裂占主导的失效模式逐步转变为以穿晶-沿晶相混合的断裂模式。这期间,更多的微缺陷被激活并扩展形成微裂纹,从而导致混合型断裂模式的发生。材料失效模式的转变将引起更多的能量耗散,这是断裂韧性升高的根本原因。
  • 图  1  试样几何尺寸图(单位: mm)

    Figure  1.  Schematic diagram of the specimen (unit: mm)

    图  2  SHPB装置示意图

    Figure  2.  Schematic diagram of the SHPB device

    图  3  典型实验信号

    Figure  3.  Typical experimental signals

    图  4  有限元模拟图

    Figure  4.  Diagram of finite element simulation

    图  5  起裂时刻应力分布云图

    Figure  5.  Stress distribution at fracture initiation time

    图  6  试样的实测应变与模拟应变

    Figure  6.  Measured and simulated strain curves on the specimen

    图  7  动态应力强度因子-时间曲线

    Figure  7.  Dynamic stress intensity factor-time curve

    图  8  实验前后的氧化铝陶瓷试件

    Figure  8.  Specimen of alumina ceramic before and after experiment

    图  9  试样断裂过程高速摄影图(1.27 TPa·m1/2·s−1

    Figure  9.  High-speed images of the fracture process (1.27 TPa·m1/2·s−1)

    图  10  氧化铝陶瓷动态断裂韧性的加载速率效应

    Figure  10.  Effect of loading rate on dynamic fracture toughness of alumina ceramics

    图  11  氧化铝陶瓷起裂时间随加载速率的变化

    Figure  11.  Variation of fracture initiation time of alumina ceramic specimen with loading rates

    图  12  0.45 TPa·m1/2·s−1加载速率下氧化铝陶瓷断口形貌

    Figure  12.  Fracture morphology of alumina ceramic at 0.45 TPa·m1/2·s−1

    图  13  1.83 TPa·m1/2·s−1加载速率下氧化铝陶瓷断口形貌

    Figure  13.  Fracture morphology of alumina ceramic at 1.83 TPa·m1/2·s−1

    表  1  氧化铝陶瓷的元素成分及质量分数

    Table  1.   Composition and mass fraction of alumina ceramic %

    Al2O3SiO2Fe2O3Na2OCaOMgO
    ≥990~2.80~0.0250~0.060~1.50~0.05
    下载: 导出CSV

    表  2  氧化铝陶瓷的力学性能参数

    Table  2.   Mechanical properties of alumina ceramic

    ρ/(g·cm−3)E/GPaμσb/MPa
    3.5~3.63000.2300
    下载: 导出CSV

    表  3  部的材料及力学性能

    Table  3.   Mechanical properties of materials

    部件材料ρ/(kg·m−3)E/GPaμ
    入射杆/透射杆18Ni马氏体钢80001900.3
    夹具高强钢40Cr78201990.3
    试样氧化铝陶瓷35503500.2
    下载: 导出CSV
  • [1] 余毅磊, 蒋招绣, 王晓东, 等. 轻型陶瓷/金属复合装甲抗垂直侵彻过程中陶瓷碎裂行为研究 [J]. 爆炸与冲击, 2021, 41(11): 113301. DOI: 10.11883/bzycj-2021-0134.

    YU Y L, JIANG Z X, WANG X D, et al. Research on ceramic fragmentation behavior of lightweight ceramic/metal composite armor during vertical penetration [J]. Explosion and Shock Waves, 2021, 41(11): 113301. DOI: 10.11883/bzycj-2021-0134.
    [2] 余毅磊, 王晓东, 任文科, 等. 三层组合陶瓷复合装甲的抗侵彻性能及其损伤机制 [J]. 兵工学报, 2024, 45(1): 44–57. DOI: 10.12382/bgxb.2022.0319.

    YU Y L, WANG X D, REN W K, et al. Anti-penetration performance and damage mechanism of three-layer composite ceramic armor [J]. Acta Armamentarii, 2024, 45(1): 44–57. DOI: 10.12382/bgxb.2022.0319.
    [3] 武一丁, 王晓东, 余毅磊, 等. 纤维背板结构对B4C陶瓷复合装甲抗侵彻破碎特性的影响 [J]. 爆炸与冲击, 2023, 43(9): 091411. DOI: 10.11883/bzycj-2023-0133.

    WU Y D, WANG X D, YU Y L, et al. Affection of fiber backboard structure on the penetration and crushing resistance of B4C ceramic composite armor [J]. Explosion and Shock Waves, 2023, 43(9): 091411. DOI: 10.11883/bzycj-2023-0133.
    [4] COMMINS T, GRAHAM A, SIVIOUR C R. Influence of surface preparation and polymer backing properties on the quasi-static and impact response of ceramic faced 1D armour systems [J]. International Journal of Impact Engineering, 2023, 180: 104708. DOI: 10.1016/j.ijimpeng.2023.104708.
    [5] 马铭辉, 武一丁, 王晓东, 等. 多孔钛合金夹芯层陶瓷/UHMWPE复合结构的抗侵彻性能 [J]. 爆炸与冲击, 2024, 44(4): 041001. DOI: 10.11883/bzycj-2023-0375.

    MA M H, WU Y D, WANG X D, et al. Penetration resistance of ceramic/UHMWPE composite structures with porous titanium alloy sandwich layer [J]. Explosion and Shock Waves, 2024, 44(4): 041001. DOI: 10.11883/bzycj-2023-0375.
    [6] 谢雨珊, 陆建华, 徐松林, 等. Mo-ZrC梯度金属陶瓷的冲击响应行为 [J]. 爆炸与冲击, 2023, 43(3): 033101. DOI: 10.11883/bzycj-2022-0374.

    XIE Y S, LU J H, XU S L, et al. On impact properties of Mo-ZrC gradient metal ceramics [J]. Explosion and Shock Waves, 2023, 43(3): 033101. DOI: 10.11883/bzycj-2022-0374.
    [7] HUANG C Y, CHEN Y L. Effect of mechanical properties on the ballistic resistance capability of Al2O3-ZrO2 functionally graded materials [J]. Ceramics International, 2016, 42(11): 12946–12955. DOI: 10.1016/j.ceramint.2016.05.067.
    [8] 牛欢欢, 闫晓鹏, 罗浩舜, 等. 不同应变率下蓝宝石透明陶瓷玻璃的力学响应 [J]. 爆炸与冲击, 2022, 42(7): 073105. DOI: 10.11883/bzycj-2021-0434.

    NIU H H, YAN X P, LUO H S, et al. Mechanical response of sapphire transparent ceramic glass at different strain rates [J]. Explosion and Shock Waves, 2022, 42(7): 073105. DOI: 10.11883/bzycj-2021-0434.
    [9] 党泉勇, 葛彦鑫, 高玉波. 冲击加载下Al2O3/SiC复合陶瓷的动态力学行为 [J]. 兵工学报, 2022, 43(1): 175–180. DOI: 10.3969/j.issn.1000-1093.2022.01.019.

    DANG Q Y, GE Y X, GAO Y B. Dynamic mechanical properties of Al2O3/SiC composite ceramic subjected to impact loading [J]. Acta Armamentarii, 2022, 43(1): 175–180. DOI: 10.3969/j.issn.1000-1093.2022.01.019.
    [10] AKELLA K. Studies for improved damage tolerance of ceramics against ballistic impact using layers [J]. Procedia Engineering, 2017, 173: 244–250. DOI: 10.1016/j.proeng.2016.12.006.
    [11] BAO J W, WANG Y W, CHENG X W, et al. Ballistic properties of silicon carbide ceramic under weak support conditions [J]. Journal of Materials Research and Technology, 2024, 28: 1764–1773. DOI: 10.1016/j.jmrt.2023.12.035.
    [12] 何泽夏, 路民旭, 郑修麟, 等. 陶瓷材料裂纹制备及其在KIC测试中的应用 [J]. 兵器材料科学与工程, 1993, 16(2): 57–60. DOI: 10.14024/j.cnki.1004-244x.1993.02.014.
    [13] 王学成, 金志浩, 李光新, 等. 双扭法及其在脆性材料力学性能评定中的应用 [J]. 材料科学进展, 1989, 3(5): 436–441.

    WANG X C, JIN Z H, LI G X, et al. Double torsion method and its use for mechanical properties evaluation of brittle materials [J]. Chinese Journal of Materials Research, 1989, 3(5): 436–441.
    [14] KASAEIAN-NAEINI M, SEDIGHI M, HASHEMI R, et al. Microstructure, mechanical properties and fracture toughness of ECAPed magnesium matrix composite reinforced with hydroxyapatite ceramic particulates for bioabsorbable implants [J]. Ceramics International, 2023, 49(11): 17074–17090. DOI: 10.1016/j.ceramint.2023.02.069.
    [15] SUN N J, CHENG Y, ZHU T B, et al. Mechanical properties of binderless tungsten carbide enhanced via the addition of ZrO2-20 wt% Al2O3 composite powder and graphene nanosheets [J]. Ceramics International, 2023, 49(14): 22853–22860. DOI: 10.1016/j.ceramint.2023.04.109.
    [16] SUN N J, ZHU T B, LIANG X, et al. Improved comprehensive mechanical properties of oscillatory pressure sintered WC–ZrO2–Al2O3 ceramics with VC/Cr3C2 addition [J]. Ceramics International, 2023, 49(7): 11494–11503. DOI: 10.1016/j.ceramint.2022.11.349.
    [17] 吴昊龙, 曹大可, 李俊峰, 等. 莫来石涂层对氧化铝基体力学性能的影响 [J]. 硅酸盐学报, 2023, 51(3): 750–756. DOI: 10.14062/j.issn.0454-5648.20221008.

    WU H L, CAO D K, LI J F, et al. Effects of mullite coating on mechanical properties of alumina component [J]. Journal of the Chinese Ceramic Society, 2023, 51(3): 750–756. DOI: 10.14062/j.issn.0454-5648.20221008.
    [18] KONG D K, GUO A F, WU H L, et al. Method for preparing biomimetic ceramic structures with high strength and high toughness [J]. Ceramics International, 2023, 49(24): 40284–40296. DOI: 10.1016/j.ceramint.2023.10.001.
    [19] CHAI J L, ZHU Y B, SHEN T L, et al. Assessing fracture toughness in sintered Al2O3–ZrO2(3Y)–SiC ceramic composites through indentation technique [J]. Ceramics International, 2020, 46(17): 27143–27149. DOI: 10.1016/j.ceramint.2020.07.194.
    [20] JI M, LI H Y, ZHENG J, et al. An experimental study on the strain-rate-dependent compressive and tensile response of an alumina ceramic [J]. Ceramics International, 2022, 48(19): 28121–28134. DOI: 10.1016/j.ceramint.2022.06.117.
    [21] ZAIEMYEKEH Z, LI H Y, ROMANYK D L, et al. Strain-rate-dependent behavior of additively manufactured alumina ceramics: Characterization and mechanical testing [J]. Journal of Materials Research and Technology, 2024, 28: 3794–3804. DOI: 10.1016/j.jmrt.2023.12.274.
    [22] MA Y Y, WANG Z Y, QIN Y Q. Impact of characteristic length and loading rate upon dynamic constitutive behavior and fracture process in alumina ceramics [J]. Ceramics International, 2023, 49(3): 4775–4784. DOI: 10.1016/j.ceramint.2022.09.367.
    [23] TONG S H, TIAN D Q, MA Q W, et al. Static and dynamic fracture toughness of graphite materials with varying grain sizes [J]. Journal of Nuclear Materials, 2024, 599: 155221. DOI: 10.1016/j.jnucmat.2024.155221.
    [24] PANDOURIA A K, KUMAR S, TIWARI V. Determination of static and dynamic fracture initiation toughness and numerical simulation of dynamic 3-point bend experiments of Al6063-T6 [J]. Mechanics Research Communications, 2023, 128: 104070. DOI: 10.1016/j.mechrescom.2023.104070.
    [25] 陈静静. 基于高速DIC方法的脆性材料动态力学性能研究 [D]. 北京: 北京理工大学, 2014: 43–44.

    CHEN J J. Study on the dynamic mechanical properties of brittle materials by high-speed DIC [D]. Beijing: Beijing Institute of Technology, 2014: 43–44.
    [26] LIU K W, GUO T F, YANG J C, et al. Static and dynamic fracture behavior of rock-concrete bi-material disc with different interface crack inclinations [J]. Theoretical and Applied Fracture Mechanics, 2023, 123: 103659. DOI: 10.1016/j.tafmec.2022.103659.
    [27] LIAN H H, SUN X J, YU Z P, et al. Study on the dynamic fracture properties and size effect of concrete based on DIC technology [J]. Engineering Fracture Mechanics, 2022, 274: 108789. DOI: 10.1016/j.engfracmech.2022.108789.
    [28] LI Z Y, WANG Z. Effect of interlayer carbon nanotube films on the quasi-static and dynamic mode Ⅰ fracture behavior of laminated composites – An experimental and numerical investigation [J]. Theoretical and Applied Fracture Mechanics, 2023, 125: 103932. DOI: 10.1016/j.tafmec.2023.103932.
    [29] FENG W H, TANG Y C, HE W M, et al. Mode Ⅰ dynamic fracture toughness of rubberised concrete using a drop hammer device and split Hopkinson pressure bar [J]. Journal of Building Engineering, 2022, 48: 103995. DOI: 10.1016/j.jobe.2022.103995.
    [30] YANG Z Q, WANG Z J, QIN N. Experimental and numerical investigation of model I dynamic fracture toughness of 95W-3.5Ni-1.5Fe alloy using the semi-circular bend specimens [J]. Engineering Fracture Mechanics, 2021, 258: 108053. DOI: 10.1016/j.engfracmech.2021.108053.
    [31] ZHANG Z Z, MAO H T, CHEN Y L, et al. Dynamic fracture toughness and damage mechanism of 38CrMoAl steel under salt spray corrosion [J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103382. DOI: 10.1016/j.tafmec.2022.103382.
    [32] 赵亚溥. 裂纹动态起始问题的研究进展 [J]. 力学进展, 1996, 26(3): 362–378.

    ZHAO Y P. The advances of studies on the dynamic initiation of cracks [J]. Advances in Mechanics, 1996, 26(3): 362–378.
    [33] FAN C Z, XU Z J, HAN Y, et al. Study on mode I dynamic fracture characteristics with a mini three-point bending specimen for the split Hopkinson bar technique [J]. International Journal of Impact Engineering, 2023, 179: 104635. DOI: 10.1016/j.ijimpeng.2023.104635.
    [34] FAN C Z, XU Z J, HAN Y, et al. Effects of notch width and loading rate on the dynamic mode II fracture toughness of Ti-6Al-4V [J]. Engineering Fracture Mechanics, 2024, 304: 110173. DOI: 10.1016/j.engfracmech.2024.110173.
    [35] FAN C Z, XU Z J, HAN Y, et al. Loading rate effect and failure mechanisms of ultra-high-strength steel under mode Ⅱ fracture [J]. International Journal of Impact Engineering, 2023, 171: 104374. DOI: 10.1016/j.ijimpeng.2022.104374.
    [36] 范昌增, 许泽建, 何晓东, 等. 加载速率对40Cr钢Ⅱ型动态断裂特性的影响 [J]. 爆炸与冲击, 2021, 41(8): 083101. DOI: 10.11883/bzycj-2021-0029.

    FAN C Z, XU Z J, HE X D, et al. Effect of loading rate on the mode Ⅱ dynamic fracture characteristics of 40Cr steel [J]. Explosion and Shock Waves, 2021, 41(8): 083101. DOI: 10.11883/bzycj-2021-0029.
    [37] 张永新, 范昌增, 许泽建, 等. 球墨铸铁在低温及冲击载荷下的韧脆转变行为 [J]. 爆炸与冲击, 2025, 45(8): 083103. DOI: 10.11883/bzycj-2024-0002.

    ZHANG Y X, FAN C Z, XU Z J, et al. Ductile-brittle transition behaviors of nodular cast iron under low temperature and impact loading [J]. Explosion and Shock Waves, 2025, 45(8): 083103. DOI: 10.11883/bzycj-2024-0002.
    [38] 蔡治城, 许泽建, 郭保桥, 等. 氧化锆陶瓷的动态弯曲断裂行为 [J]. 兵工学报, 2025, 46(4): 270–278. DOI: 10.12382/bgxb.2024.0020.

    CAI Z C, XU Z J, GUO B Q, et al. Dynamic bending fracture behavior of zirconia ceramic [J]. Acta Armamentarii, 2025, 46(4): 270–278. DOI: 10.12382/bgxb.2024.0020.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  285
  • HTML全文浏览量:  32
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-02
  • 修回日期:  2025-06-17
  • 网络出版日期:  2025-06-17

目录

    /

    返回文章
    返回