• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

水下接触和近场爆炸作用下沉箱码头的毁伤特性

董琪 刘靖晗 李凌锋 高屹 韦灼彬

董琪, 刘靖晗, 李凌锋, 高屹, 韦灼彬. 水下接触和近场爆炸作用下沉箱码头的毁伤特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0332
引用本文: 董琪, 刘靖晗, 李凌锋, 高屹, 韦灼彬. 水下接触和近场爆炸作用下沉箱码头的毁伤特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0332
DONG Qi, LIU Jinghan, LI Lingfeng, GAO Yi, WEI Zhuobin. Damage characteristic of caisson gravity wharf subjected to underwater contact and near-field explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0332
Citation: DONG Qi, LIU Jinghan, LI Lingfeng, GAO Yi, WEI Zhuobin. Damage characteristic of caisson gravity wharf subjected to underwater contact and near-field explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0332

水下接触和近场爆炸作用下沉箱码头的毁伤特性

doi: 10.11883/bzycj-2024-0332
详细信息
    作者简介:

    董 琪(1990- ),男,博士,工程师,dq_1990@163.com

    通讯作者:

    刘靖晗(1992- ),男,博士,讲师,1226001717@qq.com

  • 中图分类号: O383.1

Damage characteristic of caisson gravity wharf subjected to underwater contact and near-field explosion

  • 摘要: 为探究水下接触和近场爆炸下沉箱码头的毁伤机理和荷载特性,基于沉箱码头缩尺模型试验,采用有限元数值模拟开展对比研究,分析了沉箱码头内冲击波荷载的传播、衰减规律以及沉箱码头的破坏过程和毁伤机理。研究结果表明:水下接触和近场爆炸下,沉箱码头的毁伤区域和破坏特征基本一致,码头迎爆外墙和面板为主要破坏区域,迎爆外墙呈爆坑、破口的破坏现象,面板呈现管沟连接处横向通长裂缝、纵向裂缝并掀飞的破坏现象,沉箱码头侧墙和仓格内纵横隔墙毁伤相对轻微。水下接触和近场爆炸下,沉箱码头内冲击波在仓格的隔墙和填砂界面发生反射和透射现象,码头迎爆外墙、侧墙、板均受到冲击载荷,冲击波荷载在沉箱内的衰减速度由陡至缓,沉箱码头的毁伤特征在水下爆炸冲击波阶段基本形成,毁伤形成时间略大于2倍的冲击波在沉箱码头内的传播时长。
  • 图  1  试验场地和炸药的布设方案

    Figure  1.  Experimental site and explosive position arrangement

    图  2  码头模型拉格朗日模型以及尺寸数据(单位:cm)

    Figure  2.  Lagrange model and dimension of wharf (unit: cm)

    图  3  欧拉域(单位:cm)

    Figure  3.  Euler domain (unit: cm)

    图  4  水下接触爆炸下码头迎爆外墙的破坏现象

    Figure  4.  The damage phenomena of the blasting wall of wharf subjected to underwater contact explosion

    图  5  水下接触爆炸下码头侧墙及面板毁伤现象

    Figure  5.  The damage phenomena of the side wall and slab of wharf subjected to underwarer contact explosion

    图  6  水下接触爆炸下仓格内隔墙毁伤现象

    Figure  6.  The damage phenomena of the interior partition of wharf subjected to underwater contact explosion

    图  7  沉箱码头内爆炸荷载峰压沿R向的变化

    Figure  7.  Variation of the peak pressure in wharf along the R direction

    图  8  码头变形及毁伤发展过程

    Figure  8.  Process of the deformation and damage of wharf

    图  9  水下近场爆炸下码头迎爆外墙破坏现象

    Figure  9.  The damage phenomena of blasting wall of wharf subjected to underwater near-field explosion

    图  10  水下近场爆炸下码头侧墙及面板毁伤现象

    Figure  10.  Damage phenomena of side wall and slab of wharf subjected to underwater near-field explosion

    图  11  内隔墙毁伤现象对比

    Figure  11.  Comparison of the damage phenomena of interior partition

    图  12  沉箱码头内爆炸荷载峰压沿R向的变化

    Figure  12.  Variation of load in wharf along the R direction

    图  13  码头变形与毁伤过程

    Figure  13.  Process of the deformation and damage of wharf

    表  1  码头模型各部位的混凝土厚度和配筋

    Table  1.   Concrete thickness and reinforcement configuration of main members

    位置混凝土厚度/cm配筋情况保护层厚度/cm
    仓格外墙12双层双向配筋,钢筋直径1.2 cm,间距18 cm2.0
    仓格内隔墙8双层双向配筋,钢筋直径0.8 cm,间距9 cm1.5
    沉箱底板25双层双向配筋,钢筋直径2.0 cm,间距18 cm4.0
    管沟底板13双层双向配筋,钢筋直径0.6 cm,间距15 cm2.0
    管沟外壁12, 8双层双向配筋,钢筋直径0.6 cm,间距15 cm1.5
    面板6管沟上部面板单层双向配筋,其他部位不配筋1.5
    封仓板6不配筋
    下载: 导出CSV

    表  2  试验工况

    Table  2.   Experimental schemes

    工况爆炸类型炸药当量/kg引爆位置炸深/m
    1水下接触爆炸1紧贴沉箱中间仓格外墙中部0.9
    2水下近场爆炸1正对沉箱中间仓格外墙中心距离0.5 m0.9
    下载: 导出CSV

    表  3  混凝土HJC模型参数($f_{\mathrm{c}} $=28.2 MPa)

    Table  3.   HJC model parameters of concrete (fc=28.2 MPa)

    ρ0/(kg·m−3) G/GPa $f'_c$/MPa A B C N
    2440 9.24 22.26 0.79 1.6 0.007 0.61
    Smax D1 D2 EFMIN T/MPa pcrush/MPa μcrush
    7.0 0.034 1.0 0.0068 2.93 7.42 0.0011
    Plock/GPa μlock k1/GPa k2/GPa k3/GPa ${\dot \varepsilon _0}$/μs−1 fs
    0.80 0.11 85 −171 208 1E-6 0.004
    下载: 导出CSV

    表  4  混凝土HJC模型参数($f_{\mathrm{c}} $=35.0 MPa)

    Table  4.   HJC mode parameters of concrete (fc=35.0 MPa)

    ρ0/(kg·m−3) G/GPa $f'_c$/MPa A B C N
    2440 10.29 27.62 0.79 1.6 0.007 0.61
    Smax D1 D2 EFMIN T/MPa pcrush/MPa μcrush
    7.0 0.035 1.0 0.0075 3.26 9.21 0.0012
    Plock/GPa μlock k1/GPa k2/GPa k3/GPa ${\dot \varepsilon _0}$/μs−1 fs
    0.80 0.11 85 −171 208 1E-6 0.004
    下载: 导出CSV

    表  5  钢筋材料参数表

    Table  5.   Parameters of steel bar

    ρ0/(kg·m−3) ν SIGY/ MPa E/GPa Gs/GPa SRC/ s−1 SRP EFS VP
    7850 0.3 335 210 1.2 40 5 0.12 0
    下载: 导出CSV

    表  6  沉箱填砂参数[21-22]

    Table  6.   Parameter of cabin backfill

    ρ0/(kg·m−3) E/MPa G/MPa SIGY/MPa PC/MPa EFS
    1800 47.38 16.01 7.70 -0.70 1.2
    下载: 导出CSV

    表  7  材料参数

    Table  7.   Material parameters

    Material ρ0/(kg·m−3) C0 C1 C2 C3 C4 C5 C6 Ea/(J·kg−1)
    Air 1.293 0 0 0 0 0.4 0.4 0 2.5×105
    Material ρ0/(kg·m−3) c/(m·s−1) S1 S2 S3 γ0
    Water 1000 1480 2.56 −1.986 1.2268 0.5
    Material ρ0/(kg·m−3) A1/GPa B1/GPa ω R1 R2 D/(m·s−1) Pcj/GPa
    Explosive 16543 374 3.23 0.3 4.15 0.95 6390 27
    Material ρ0/(kg·m−3) Es/MPa Gs/MPa
    Soil 1860 22.4 8
    下载: 导出CSV
  • [1] 段卫东, 蒋培, 吴亮, 等. 爆炸力学 [M]. 武汉: 华中科技大学出版社, 2023: 90.

    DUAN W D, JIANG P, WU L, et al. Explosion mechanics [M]. Wuhan: Huazhong University of Science Technology Press, 2023: 90.
    [2] 文彦博, 胡亮亮, 秦健, 等. 近场水下爆炸气泡脉动及水射流的实验与数值模拟研究 [J]. 爆炸与冲击, 2022, 42(5): 053203. DOI: 10.11883/bzycj-2021-0206.

    WEN Y B, HU L L, QIN J, et al. Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion [J]. Explosion and Shock Waves, 2022, 42(5): 053203. DOI: 10.11883/bzycj-2021-0206.
    [3] 黄谢平, 孔祥振, 陈祖煜, 等. 近水面、库中、库底水下爆炸荷载作用下混凝土重力坝的破坏模式对比 [J]. 土木工程学报, 2023, 56(3): 116–128. DOI: 10.15951/j.tmgcxb.21121206.

    HUANG X P, KONG X Z, CHEN Z Y, et al. Comparison of failure modes of concrete gravity dams induced by underwater explosion loads near the water free surface, the middle, and the bottom of the reservoir [J]. China Civil Engineering Journal, 2023, 56(3): 116–128. DOI: 10.15951/j.tmgcxb.21121206.
    [4] CHEN L M, LI S T, CHEN Y Q, et al. Study on damage effect of caisson wharves subjected to underwater explosion [J]. Ocean Engineering, 2023, 275: 113958. DOI: 10.1016/j.oceaneng.2023.113958.
    [5] ZHANG Y, ZHOU Y D, WU H. Influence of water level on RC caisson subjected to underwater explosions [J]. Ocean Engineering, 2022, 266: 113162. DOI: 10.1016/j.oceaneng.2022.113162.
    [6] ZHOU Y D, CHENG Y H, CHEN Z Q, et al. Dynamic behaviors of RC caisson subjected to underwater explosions [J]. Marine Structures, 2024, 94: 103568. DOI: 10.1016/j.marstruc.2023.103568.
    [7] 董琪, 韦灼彬, 唐廷, 等. 港池环境近水面水下爆炸特性及其毁伤效应 [J]. 高压物理学报, 2019, 33(4): 045103. DOI: 10.11858/gywlxb.20180638.

    DONG Q, WEI Z B, TANG T, et al. Loading characteristics and damage effect of near-surface underwater explosion in harbor basin [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045103. DOI: 10.11858/gywlxb.20180638.
    [8] 刘靖晗, 唐廷, 韦灼彬, 等. 水下接触爆炸下沉箱码头毁伤效应 [J]. 爆炸与冲击, 2020, 40(11): 111407. DOI: 10.11883/bzycj-2019-0378.

    LIU J H, TANG T, WEI Z B, et al. Damage effects of a caisson wharf subjected to underwater contact explosion [J]. Explosion and Shock Waves, 2020, 40(11): 111407. DOI: 10.11883/bzycj-2019-0378.
    [9] 刘靖晗, 唐廷, 韦灼彬, 等. 沉箱码头在空中和水下爆炸作用下的累积毁伤效应研究 [J]. 振动与冲击, 2024, 43(12): 298–306. DOI: 10.13465/j.cnki.jvs.2024.12.033.

    LIU J H, TANG T, WEI Z B, et al. Cumulative damage effect of the caisson wharf induced by air and underwater explosions [J]. Journal of Vibration and Shock, 2024, 43(12): 298–306. DOI: 10.13465/j.cnki.jvs.2024.12.033.
    [10] 黄谢平, 孔祥振, 陈祖煜, 等. 水下爆炸对重力坝的毁伤效应及最优爆距 [J]. 爆炸与冲击, 2023, 43(5): 052202. DOI: 10.11883/bzycj-2022-0113.

    HUANG X P, KONG X Z, CHEN Z Y, et al. Damage effects of underwater explosions on gravity dams and optimal standoff distances [J]. Explosion and Shock Waves, 2023, 43(5): 052202. DOI: 10.11883/bzycj-2022-0113.
    [11] 王高辉, 高政, 卢文波, 等. 考虑初始应力的混凝土重力坝水下爆炸毁伤特性研究 [J]. 振动与冲击, 2022, 41(11): 133–140. DOI: 10.13465/j.cnki.jvs.2022.11.017.

    WANG G H, GAO Z, LU W B, et al. Damage characteristics of underwater explosion of concrete gravity dam considering initial stress [J]. Journal of Vibration and Shock, 2022, 41(11): 133–140. DOI: 10.13465/j.cnki.jvs.2022.11.017.
    [12] CHEN L M, LI S T, CHEN Y Q, et al. Study on the dynamic characteristics of pile wharves subjected to underwater explosion [J]. Ocean Engineering, 2024, 291: 116406. DOI: 10.1016/j.oceaneng.2023.116406.
    [13] ZHUANG T S, WANG M Y, WU J, et al. Experimental investigation on dynamic response and damage models of circular RC columns subjected to underwater explosions [J]. Defence Technology, 2020, 16(4): 856–875. DOI: 10.1016/j.dt.2019.10.015.
    [14] LI Q, WANG G H, LU W B, et al. Failure modes and effect analysis of concrete gravity dams subjected to underwater contact explosion considering the hydrostatic pressure [J]. Engineering Failure Analysis, 2018, 85: 62–76. DOI: 10.1016/j.engfailanal.2017.12.008.
    [15] 闫秋实, 常松. 水下爆炸三维数值模拟特征参量敏感性分析 [J]. 北京工业大学学报, 2023, 49(10): 1099–1108. DOI: 10.11936/bjutxb2022090043.

    YAN Q S, CHANG S. Underwater explosion 3D numerical simulation characteristic parameter sensitivity analysis [J]. Journal of Beijing University of Technology, 2023, 49(10): 1099–1108. DOI: 10.11936/bjutxb2022090043.
    [16] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures [J]. Journal of Applied Mechanics, 2011, 78(5): 051003. DOI: 10.1115/1.4004326.
    [17] 张凤国, 李恩征. 大应变、高应变率及高压强条件下混凝土的计算模型 [J]. 爆炸与冲击, 2002, 22(3): 198–202. DOI: 10.11883/1001-1455(2002)03-0198-5.

    ZHANG F G, LI E Z. A computational model for concrete subjected to large strains, high strain rates, and high pressures [J]. Explosion and Shock Waves, 2002, 22(3): 198–202. DOI: 10.11883/1001-1455(2002)03-0198-5.
    [18] HALLQUIST J O. LS-DYNA® keyword user’s manual: version 971 [R]. Livermore: Livermore Software Technology Corporation, 2013.
    [19] 孙其然, 李芮宇, 赵亚运, 等. HJC模型模拟钢筋混凝土侵彻实验的参数研究 [J]. 工程力学, 2016, 33(8): 248–256. DOI: 10.6052/j.issn.1000-4750.2014.12.1094.

    SUN Q R, LI R Y, ZHAO Y Y, et al. Investigation on parameters of HJC model applied to simulate perforation experiments of reinforced concrete [J]. Engineering Mechanics, 2016, 33(8): 248–256. DOI: 10.6052/j.issn.1000-4750.2014.12.1094.
    [20] 姜华, 王君杰. 弹体侵彻混凝土数值模拟失效指标研究 [J]. 振动与冲击, 2009, 28(8): 30–34,197. DOI: 10.3969/j.issn.1000-3835.2009.08.007.

    JIANG H, WANG J J. Investigation on failure index of concrete in the projectile perforation simulation [J]. Journal of Vibration and Shock, 2009, 28(8): 30–34,197. DOI: 10.3969/j.issn.1000-3835.2009.08.007.
    [21] 顾文彬, 叶序双, 詹发民, 等. 球形装药半无限土介质中爆炸动力学分析 [J]. 工程爆破, 1999, 5(1): 5–10. DOI: 10.3969/j.issn.1006-7051.1999.01.002.

    GU W B, YE X S, ZHAN F M, et al. Dynamic analysis on spherical charges exploding in semi-infinite soil medium [J]. Engineering Blasting, 1999, 5(1): 5–10. DOI: 10.3969/j.issn.1006-7051.1999.01.002.
    [22] 高洪泉, 卢芳云, 赵宏伟. 不同土壤介质中爆炸的数值模拟 [C]//第六届全国工程结构安全防护学术会议论文集. 洛阳: 中国力学学会爆炸力学专业委员会, 中国土木工程学会防护工程分会, 中国岩石力学与工程学会岩石动力学专业委员会, 2007: 91–96.
    [23] 董琪, 韦灼彬, 唐廷, 等. 爆炸深度对浅水爆炸气泡脉动的影响 [J]. 高压物理学报, 2018, 32(2): 024102. DOI: 10.11858/gywlxb.20170580.

    DONG Q, WEI Z B, TANG T, et al. Influence of explosion depth on bubble pulsation in shallow water explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 024102. DOI: 10.11858/gywlxb.20170580.
    [24] 甘露, 陈力, 宗周红, 等. 近距离爆炸比例爆距的界定标准及荷载模型 [J]. 爆炸与冲击, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.

    GAN L, CHEN L, ZONG Z H, et al. Definition of scaled distance of close-in explosion and blast load calculation model [J]. Explosion and Shock Waves, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  27
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-09
  • 修回日期:  2025-05-29
  • 网络出版日期:  2025-06-04

目录

    /

    返回文章
    返回