电极表面不平整性对锂电池短路触发行为的影响

贾亦楷 刘子敬 黄庆丹 王璐冰

贾亦楷, 刘子敬, 黄庆丹, 王璐冰. 电极表面不平整性对锂电池短路触发行为的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0339
引用本文: 贾亦楷, 刘子敬, 黄庆丹, 王璐冰. 电极表面不平整性对锂电池短路触发行为的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0339
JIA Yikai, LIU Zijing, HUANG Qingdan, WANG Lubing. Effect of surface roughness of lithium-ion battery electrodes on short-circuit triggering behaviors[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0339
Citation: JIA Yikai, LIU Zijing, HUANG Qingdan, WANG Lubing. Effect of surface roughness of lithium-ion battery electrodes on short-circuit triggering behaviors[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0339

电极表面不平整性对锂电池短路触发行为的影响

doi: 10.11883/bzycj-2024-0339
基金项目: 国家自然科学基金(12402463);冲击与安全工程教育重点实验室(宁波大学)开放课题(CJ202402)
详细信息
    作者简介:

    贾亦楷(1994- ),男,博士,教授,yjia3@nwpu.edu.cn

  • 中图分类号: O383

Effect of surface roughness of lithium-ion battery electrodes on short-circuit triggering behaviors

  • 摘要: 锂离子电池遭受外部冲击时内部隔膜的形变和失效是引发内部短路的关键因素之一。电池电极表面通常并不平整,易造成隔膜应力集中,影响电池的机械稳定性。因此,本研究基于数值模拟和理论分析,针对电池隔膜在非平整表面压缩条件下的力学行为及其短路安全边界进行了深入探讨。选取包括一段宽度为50 μm的隔膜及其附近的正负极涂层区域作为代表性单胞进行二维有限元建模与数值计算。通过分析隔膜等效应力-应变曲线发现受到不平整表面压缩的隔膜相比于理想平面压缩表现出“软化现象”,随着加载的进行,加载面和隔膜之间的空隙逐渐被填充,非平整面和平整面压缩的载荷差异逐渐减小。通过对隔膜失效应力的参数化分析,发现随着颗粒直径的增加、隔膜厚度的减小或一定范围内的加载速率增加,隔膜表现出平均应力降低、屈服点后移等行为,短路失效应力也随之减小。进一步的,通过建立隔膜在非平整表面压缩下的等效压缩本构模型,从理论上解释了粗糙度对失效应力的影响,并推导出了二者的定量关系。
  • 图  1  锂电池的碰撞短路失效问题

    Figure  1.  The collision-induced internal short-circuit in lithium-ion batteries

    图  2  隔膜压缩加载工况建模方法

    Figure  2.  Modeling methods for separator compression loading conditions

    图  3  边界条件设置

    Figure  3.  Boundary condition setups

    图  4  不同加载条件下隔膜的等效应力-应变曲线及应变分布

    Figure  4.  Equivalent stress-strain curves and strain distribution of the separator under different loading conditions

    图  5  不同颗粒尺寸下隔膜的力学行为及短路失效应力

    Figure  5.  The mechanical behavior and short-circuit failure stress of the separator under different particle sizes

    图  6  不同厚度隔膜的力学行为及短路失效应力

    Figure  6.  The mechanical behavior and short-circuit failure stress of the separator under different separator thickness

    图  7  不同加载速率下隔膜的力学行为及短路失效应力

    Figure  7.  The mechanical behavior and short-circuit failure stress of the separator under different loading rates

    图  8  考虑电极表面粗糙度的隔膜压缩本构模型的建立

    Figure  8.  Establishment of the constitutive model for the separator compression considering the roughness of the electrode surface

    图  9  理论曲线与数值模拟曲线比对

    Figure  9.  Comparison between theoretical curves and numerical simulation curves.

  • [1] CHEN Y Q, KANG Y Q, ZHAO Y, et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards [J]. Journal of Energy Chemistry, 2021, 59: 83–99. DOI: 10.1016/j.jechem.2020.10.017.
    [2] 陈文博, 颜健, 孟凌杰, 等. 电动汽车动力锂电池火灾危险性的研究进展 [J]. 电源技术, 2021, 45(2): 270–273. DOI: 10.3969/j.issn.1002-087X.2021.02.030.

    CHEN W B, YAN J, MENG L J, et al. Analysis of current situation of fire hazard of power lithium ion batteries for electric vehicles [J]. Chinese Journal of Power Sources, 2021, 45(2): 270–273. DOI: 10.3969/j.issn.1002-087X.2021.02.030.
    [3] LIU B H, JIA Y K, YUAN C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review [J]. Energy Storage Materials, 2020, 24: 85–112. DOI: 10.1016/j.ensm.2019.06.036.
    [4] XIA Y, WIERZBICKI T, SAHRAEI E, et al. Damage of cells and battery packs due to ground impact [J]. Journal of Power Sources, 2014, 267: 78–97. DOI: 10.1016/j.jpowsour.2014.05.078.
    [5] GREVE L, FEHRENBACH C. Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical lithium ion battery cells [J]. Journal of Power Sources, 2012, 214: 377–385. DOI: 10.1016/j.jpowsour.2012.04.055.
    [6] SAHRAEI E, MEIER J, WIERZBICKI T. Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells [J]. Journal of Power Sources, 2014, 247: 503–516. DOI: 10.1016/j.jpowsour.2013.08.056.
    [7] AVDEEV I, GILAKI M. Structural analysis and experimental characterization of cylindrical lithium-ion battery cells subject to lateral impact [J]. Journal of Power Sources, 2014, 271: 382–391. DOI: 10.1016/j.jpowsour.2014.08.014.
    [8] ZHU X Q, WANG H, WANG X, et al. Internal short circuit and failure mechanisms of lithium-ion pouch cells under mechanical indentation abuse conditions: An experimental study [J]. Journal of Power Sources, 2020, 455: 227939. DOI: 10.1016/j.jpowsour.2020.227939.
    [9] ZHANG X W, SAHRAEI E, WANG K. Li-ion battery separators, mechanical integrity and failure mechanisms leading to soft and hard internal shorts [J]. Scientific Reports, 2016, 6: 32578. DOI: 10.1038/srep32578.
    [10] WIERZBICKI T, SAHRAEI E. Homogenized mechanical properties for the jellyroll of cylindrical lithium-ion cells [J]. Journal of Power Sources, 2013, 241: 467–476. DOI: 10.1016/j.jpowsour.2013.04.135.
    [11] XU J, LIU B H, WANG X Y, et al. Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies [J]. Applied Energy, 2016, 172: 180–189. DOI: 10.1016/j.apenergy.2016.03.108.
    [12] WANG L B, YIN S, XU J. A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: From cell deformation to short-circuit onset [J]. Journal of Power Sources, 2019, 413: 284–292. DOI: 10.1016/j.jpowsour.2018.12.059.
    [13] SAHRAEI E, HILL R, WIERZBICKI T. Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity [J]. Journal of Power Sources, 2012, 201: 307–321. DOI: 10.1016/j.jpowsour.2011.10.094.
    [14] XU J, LIU B H, WANG L B, et al. Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing [J]. Engineering Failure Analysis, 2015, 53: 97–110. DOI: 10.1016/j.engfailanal.2015.03.025.
    [15] YUAN C H, WANG L B, YIN S, et al. Generalized separator failure criteria for internal short circuit of lithium-ion battery [J]. Journal of Power Sources, 2020, 467: 228360. DOI: 10.1016/j.jpowsour.2020.228360.
    [16] FRANCIS C F J, KYRATZIS I L, BEST A S. Lithium-ion battery separators for ionic-liquid electrolytes: A review [J]. Advanced Materials, 2020, 32(18): 1904205. DOI: 10.1002/adma.201904205.
    [17] LAGADEC M F, ZAHN R, WOOD V. Characterization and performance evaluation of lithium-ion battery separators [J]. Nature Energy, 2019, 4(1): 16–25. DOI: 10.1038/s41560-018-0295-9.
    [18] ZHAO W, LUO G, WANG C Y. Modeling internal shorting process in large-format Li-ion cells [J]. Journal of the Electrochemical Society, 2015, 162(7): A1352–A1364. DOI: 10.1149/2.1031507jes.
    [19] WANG M, LE A V, NOELLE D J, et al. Internal-short-mitigating current collector for lithium-ion battery [J]. Journal of Power Sources, 2017, 349: 84–93. DOI: 10.1016/j.jpowsour.2017.03.004.
    [20] WU Q, YANG L, LI N, et al. In-situ thermography revealing the evolution of internal short circuit of lithium-ion batteries [J]. Journal of Power Sources, 2022, 540: 231602. DOI: 10.1016/j.jpowsour.2022.231602.
    [21] KIM J, MALLARAPU A, SANTHANAGOPALAN S. Transport processes in a Li-ion cell during an internal short-circuit [J]. Journal of the Electrochemical Society, 2020, 167(9): 090554. DOI: 10.1149/1945-7111/ab995d.
    [22] ZHANG M X, LIU L S, STEFANOPOULOU A, et al. Fusing phenomenon of lithium-ion battery internal short circuit [J]. Journal of the Electrochemical Society, 2017, 164(12): A2738–A2745. DOI: 10.1149/2.1721712jes.
    [23] WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery [J]. Journal of Power Sources, 2012, 208: 210–224. DOI: 10.1016/j.jpowsour.2012.02.038.
    [24] FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry [J]. Journal of Power Sources, 2014, 255: 294–301. DOI: 10.1016/j.jpowsour.2014.01.005.
    [25] LUO Y G, FENG G X, WAN S, et al. Charging scheduling strategy for different electric vehicles with optimization for convenience of drivers, performance of transport system and distribution network [J]. Energy, 2020, 194: 116807. DOI: 10.1016/j.energy.2019.116807.
    [26] COMAN P T, RAYMAN S, WHITE R E. A lumped model of venting during thermal runaway in a cylindrical Lithium Cobalt Oxide lithium-ion cell [J]. Journal of Power Sources, 2016, 307: 56–62. DOI: 10.1016/j.jpowsour.2015.12.088.
    [27] LEE C, SAID A O, STOLIAROV S I. Impact of state of charge and cell arrangement on thermal runaway propagation in lithium ion battery cell arrays [J]. Transportation Research Record, 2019, 2673(8): 408–417. DOI: 10.1177/0361198119845654.
    [28] LI H G, ZHOU D, ZHANG M H, et al. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse [J]. Energy, 2023, 263: 126027. DOI: 10.1016/j.energy.2022.126027.
    [29] LIU B H, DUAN X D, YUAN C H, et al. Quantifying and modeling of stress-driven short-circuits in lithium-ion batteries in electrified vehicles [J]. Journal of Materials Chemistry A, 2021, 9(11): 7102–7113. DOI: 10.1039/d0ta12082k.
    [30] WANG L B, JIA Y K, XU J. Mechanistic understanding of the electrochemo-dependent mechanical behaviors of battery anodes [J]. Journal of Power Sources, 2021, 510: 230428. DOI: 10.1016/j.jpowsour.2021.230428.
    [31] HWANG I, LEE C W, KIM J C, et al. Particle size effect of Ni-rich cathode materials on lithium ion battery performance [J]. Materials Research Bulletin, 2012, 47(1): 73–78. DOI: 10.1016/J.MATERRESBULL.2011.10.002.
    [32] LIU J H, CHEN H Y, XIE J N, et al. Electrochemical performance studies of Li-rich cathode materials with different primary particle sizes [J]. Journal of Power Sources, 2014, 251: 208–214. DOI: 10.1016/j.jpowsour.2013.11.055.
    [33] SCHREINER D, LINDENBLATT J, DAUB R, et al. Simulation of the calendering process of NMC-622 cathodes for lithium-ion batteries [J]. Energy Technology, 2023, 11(5): 2200442. DOI: 10.1002/ente.202200442.
    [34] DUAN X D, WANG H C, JIA Y K, et al. A multiphysics understanding of internal short circuit mechanisms in lithium-ion batteries upon mechanical stress abuse [J]. Energy Storage Materials, 2022, 45: 667–679. DOI: 10.1016/j.ensm.2021.12.018.
    [35] KALNAUS S, WANG Y L, LI J L, et al. Temperature and strain rate dependent behavior of polymer separator for Li-ion batteries [J]. Extreme Mechanics Letters, 2018, 20: 73–80. DOI: 10.1016/j.eml.2018.01.006.
  • 加载中
图(9)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  9
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-13
  • 修回日期:  2024-11-05
  • 网络出版日期:  2024-11-07

目录

    /

    返回文章
    返回