• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

混凝土中柱形装药的爆炸破坏分区及应力波衰减规律

周鑫 冯彬 陈力

周鑫, 冯彬, 陈力. 混凝土中柱形装药的爆炸破坏分区及应力波衰减规律[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0350
引用本文: 周鑫, 冯彬, 陈力. 混凝土中柱形装药的爆炸破坏分区及应力波衰减规律[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0350
ZHOU Xin, FENG Bin, CHEN Li. Study on failure zones and attenuation law of stress waves in concrete induced by cylindrical charge explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0350
Citation: ZHOU Xin, FENG Bin, CHEN Li. Study on failure zones and attenuation law of stress waves in concrete induced by cylindrical charge explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0350

混凝土中柱形装药的爆炸破坏分区及应力波衰减规律

doi: 10.11883/bzycj-2024-0350
基金项目: 国家自然科学基金面上项目(52378487, 52378488)
详细信息
    作者简介:

    周 鑫(1996- ),男,博士研究生,zhouxin_0616@163.com

    通讯作者:

    冯 彬(1988- ),男,副研究员,fengbin.plaust@foxmail.com

  • 中图分类号: O382

Study on failure zones and attenuation law of stress waves in concrete induced by cylindrical charge explosion

  • 摘要: 为了探究柱形装药爆炸应力波在混凝土介质中的传播规律,基于Karagozian and Case concrete (KCC)本构模型和多物质ALE算法(multi-material ALE,MMALE)开展数值模拟研究。首先,通过与已有的试验数据进行对比,验证了本构模型参数和数值算法的适用性;在此基础上以峰值应力为准则,对装药周围混凝土介质的爆炸破坏分区进行划分,并讨论了各破坏分区中爆炸应力波的衰减规律;之后,分析了装药长径比对爆炸破坏分区和爆炸应力波传播规律的影响;最后,进一步考虑装药埋深的影响,并建立柱形装药爆炸应力波峰值应力计算公式。研究结果表明:各爆炸破坏分区中爆炸应力波衰减规律存在显著差异,与中远区(过渡区和破裂区)相比,装药近区(拟流体区和压碎区)衰减更快,另外,柱形装药长径比增加会加快法向峰值应力的衰减;并且建立的爆炸应力波峰值应力计算公式可以较为准确快速地计算出不同形状、不同埋深下柱形装药爆炸应力波的法向峰值应力。
  • 图  1  试验布置(单位:mm)

    Figure  1.  Schematic diagram of the experiment (Unit: mm)

    图  2  有限元模型

    Figure  2.  Finite element model

    图  3  网格收敛性分析

    Figure  3.  Mesh convergence analysis

    图  4  不同测点处的应力时程曲线

    Figure  4.  Stress-time curves at different measurement points

    图  5  有限元模型

    Figure  5.  Finite element model

    图  6  装药周围介质破坏分区

    Figure  6.  Failure zones of the surrounding medium around the charge

    图  7  环向应力时程曲线

    Figure  7.  Circumferential stress-time curves

    图  8  混凝土的损伤云图及破坏分区划分

    Figure  8.  Damage contour and the division of failure zones for concrete target

    图  9  柱形装药法向不同测点应力时程曲线

    Figure  9.  Normal stress-time curves at different measurement points for cylindrical charges

    图  10  峰值应力与比例距离关系

    Figure  10.  Relationship between peak stress and scaled distance

    图  11  各破坏分区竖向峰值应力与比例距离散点图

    Figure  11.  Scatter plot of vertical peak stress versus scaled distance for each failure zone

    图  12  破坏分区范围随着长径比的变化关系

    Figure  12.  Failure zone boundaries versus ratio of length to diameter

    图  13  装药底部及空腔壁处峰值应力变化趋势

    Figure  13.  Peak stress in guage1 and 2 versus ratio of length to diameter

    图  14  不同长径比条件下峰值应力与比例距离散点图

    Figure  14.  Scatter plot of peak stress versus scaled distance under different aspect ratios

    图  15  各破坏分区衰减系数k、衰减指数n与长径比的关系散点图

    Figure  15.  Scatter plot of attenuation coefficient k and attenuation index n versus aspect ratio for each failure zone

    图  16  数值模拟与式 (4)~(6) 计算结果对比

    Figure  16.  Comparison of stress peak values between numerical simulations and Eqs. (4)-(6)

    图  17  相对埋深及耦合系数简化模型示意图[12]

    Figure  17.  Schematic diagram of relative burial depth and coupling coefficient f[12]

    表  1  炸药本构模型及状态方程参数[25]

    Table  1.   Parameters of constitutive model and EOS for explosive[25]

    ρ/(kg·m−3) D/(m·s−1) pCJ/GPa A/GPa B/GPa ω R1 R2 E/ (GJ·m−3)
    1500 7450 22 625.3 23.29 0.28 5.25 1.60 8.56
    下载: 导出CSV

    表  2  空气本构模型及状态方程参数[26]

    Table  2.   Parameters of constitutive model and EOS for air[26]

    ρ/(kg·m−3) C0 C1 C2 C3 C4 C5 C6 E/(MJ·m−3)
    1.2929 0 0 0 0 0 0.4 0 0.25
    下载: 导出CSV

    表  3  第1组试验中各测点峰值应力的试验结果与数值模拟结果的对比

    Table  3.   Comparison of stress peak of tests with that of numerical simulation in the first group

    测点试验值/GPa 试验平均值/GPa 数值模拟值/GPa 平均误差/%
    gauge 1-1 gauge 1-4 10.261 8.476 17.40
    11.156 9.366
    gauge 1-3 gauge 1-6 1.316 1.134 13.83
    1.248 1.384
    gauge 1-2 gauge 1-5 0.492 0.531 7.93
    0.518 0.466
     注:平均误差=(试验平均值-数值模拟值)/平均值×100%
    下载: 导出CSV

    表  4  混凝土自由场破坏分区边界尺寸及介质受力特征

    Table  4.   Concrete failure zone boundaries in a free field and stressed medium properties

    破坏分区类型 边界尺寸/(mkg1/3 混凝土介质受力特征
    近流体区 0.08~0.13 混凝土受强间断冲击波作用,其峰值应力远大于混凝土剪切强度,介质呈塑性流动状态
    压碎区 0.13~0.17 爆炸应力值远大于混凝土抗压强度,介质被完全压碎
    过渡区 0.17~0.46 混凝土介质受环向和径向压力共同作用,发生压剪破坏,裂隙呈网状分布
    破裂区 0.46~1.0 混凝土介质主要受环向拉应力作用,发生拉伸破坏,形成径向裂隙
    弹性区 ≥ 1.0 介质未发生塑性变形,处于弹性状态
    下载: 导出CSV

    表  5  不同长径比的柱形装药各破坏分区参数

    Table  5.   Parameters for different length-to-diameter ratios of cylindrical charges in each failure zone

    l/d分区Z/(m/kg1/3)knR2
    2近流体区0.10~0.151.70×10−33.590.9937
    压碎区0.15~0.186.05×10−43.960.9862
    过渡区0.18~0.442.03×10−21.980.9943
    破裂区0.44~1.003.28×10−21.470.9991
    4近流体区0.14~0.171.82×10−45.250.9945
    压碎区0.17~0.201.69×10−56.590.9780
    过渡区0.20~0.421.62×10−22.240.9891
    破裂区0.42~1.003.16×10−21.520.9991
    6近流体区0.17~0.204.88×10−56.610.9964
    压碎区0.20~0.221.34×10−68.830.9705
    过渡区0.22~0.401.16×10−22.660.9826
    破裂区0.40~1.003.05×10−21.590.9985
    8近流体区0.20~0.236.66×10−68.490.9897
    压碎区0.23~0.255.39×10−710.150.9773
    过渡区0.25~0.409.30×10−32.970.9783
    破裂区0.40~1.002.85×10−21.670.9975
    下载: 导出CSV
  • [1] KRAUTHAMMER T. Modern protective structures [M]. Boca Raton: CRC Press, 2008. DOI: 10.1201/9781420015423.
    [2] PLOOSTER M N. Blast effects from cylindrical explosive charges: experimental measurements [M]. Fort Belvoir: Defense Technical Information Center, 1982: 11–18. .
    [3] ISMAIL M M, MURRAY S G. Study of the blast waves from the explosion of nonspherical charges [J]. Propellants, Explosives, Pyrotechnics, 1993, 18(3): 132–138. DOI: 10.1002/prep.19930180304.
    [4] WU C Q, FATTORI G, WHITTAKER A, et al. Investigation of air-blast effects from spherical-and cylindrical-shaped charges [J]. International Journal of Protective Structures, 2010, 1(3): 345–362. DOI: 10.1260/2041-4196.1.3.345.
    [5] SHI Y C, WANG N, CUI J, et al. Experimental and numerical investigation of charge shape effect on blast load induced by near-field explosions [J]. Process Safety and Environmental Protection, 2022, 165: 266–277. DOI: 10.1016/j.psep.2022.07.018.
    [6] 黄家蓉, 刘光昆, 吴飚, 等. 爆炸冲击作用下混凝土中动态应力波测试与模拟 [J]. 防护工程, 2020, 42(4): 23–28. DOI: 10.3969/j.issn.1674-1854.2020.04.003.

    HUANG J R, LIU G K, WU B, et al. Testing and simulation of dynamic stress wave in concrete under explosion and impact [J]. Protective Engineering, 2020, 42(4): 23–28. DOI: 10.3969/j.issn.1674-1854.2020.04.003.
    [7] GEBBEKEN N, GREULICH S, PIETZSCH A. Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests [J]. International Journal of Impact Engineering, 2006, 32(12): 2017–2031. DOI: 10.1016/j.ijimpeng.2005.08.003.
    [8] SHERKAR P, SHIN J, WHITTAKER A, et al. Influence of charge shape and point of detonation on blast-resistant design [J]. Journal of Structural Engineering, 2016, 142(2): 04015109. DOI: 10.1061/(ASCE)ST.1943-541X.0001371.
    [9] XIAO W F, ANDRAE M, GEBBEKEN N. Effect of charge shape and initiation configuration of explosive cylinders detonating in free air on blast-resistant design [J]. Journal of Structural Engineering, 2020, 146(8): 04020146. DOI: 10.1061/(ASCE)ST.1943-541X.0002694.
    [10] GAO C, KONG X Z, FANG Q, et al. Numerical investigation on free air blast loads generated from center-initiated cylindrical charges with varied aspect ratio in arbitrary orientation [J]. Defence Technology, 2022, 18(9): 1662–1678. DOI: 10.1016/j.dt.2021.07.013.
    [11] 王明涛, 程月华, 吴昊. 柱形装药空中爆炸冲击波荷载研究 [J]. 爆炸与冲击, 2024, 44(4): 043201. DOI: 10.11883/bzycj-2023-0197.

    WANG M T, CHENG Y H, WU H. Study on blast loadings of cylindrical charges air explosion [J]. Explosion and Shock Waves, 2024, 44(4): 043201. DOI: 10.11883/bzycj-2023-0197.
    [12] GAO C, KONG X Z, FANG Q. Experimental and numerical investigation on the attenuation of blast waves in concrete induced by cylindrical charge explosion [J]. International Journal of Impact Engineering, 2023, 174: 104491. DOI: 10.1016/j.ijimpeng.2023.104491.
    [13] 高矗, 孔祥振, 方秦, 等. 混凝土中爆炸应力波衰减规律的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.

    GAO C, KONG X Z, FANG Q, et al. Numerical study on attenuation of stress wave in concrete subjected to explosion [J]. Explosion and Shock Waves, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.
    [14] 杨耀宗, 孔祥振, 方秦, 等. 混凝土中带壳柱形装药爆炸应力波衰减规律的数值模拟 [J]. 爆炸与冲击, 2024, 44(11): 112202. DOI: 10.11883/bzycj-2023-0342.

    YANG Y Z, KONG X Z, FANG Q, et al. Numerical investigation on attenuation of stress waves in concrete induced by cylindrical cased charge explosion [J]. Explosion and Shock Waves, 2024, 44(11): 112202. DOI: 10.11883/bzycj-2023-0342.
    [15] 吴祥云, 曲建波, 张光明, 等. 岩石中不同埋深爆炸自由场直接地冲击参数的预计方法 [C]//崔京浩. 第20届全国结构工程学术会议论文集(第Ⅰ册). 《工程力学》杂志社, 2011: 262–267. .

    WU X Y, QU J B, ZHANG G M, et al. Prediction method of the direct ground shock parameters of explosion at different buried depths in free field of rock [C]//CUI J H. Proceedings of the Twentieth National Conference on Structural Engineering (No. I). Engineering Mechanics Magazine, 2011: 262–267.
    [16] LIU Z Y, ZHAI J Z, SU S. Numerical simulation on conical shaped charge with copper liner in several typical shapes [J]. Materials Research Proceedings, 2019, 13(3): 7–12. DOI: 10.21741/9781644900338-2.
    [17] ABIR M, ARUMUGAM D, DHANA B, et al. Numerical simulation of blast wave propagation in layered soil featuring soil-structure interaction [C]// COMPDYN. Proceedings of the 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Rhodes Island, 2017: 4752–4765. DOI: 10.7712/120117.5759.16936..
    [18] KULAK R F, BOJANOWSKI C. Modeling of cone penetration test using SPH and MM-ALE approaches [C]// Ansys Company. Proceedings of the 8th European LS-DYNA® Users Conference. Strasbourg, 2011: 1–10. .
    [19] VAN DORSSELAER N, LAPOUJADE V. A contribution to new ALE 2D method validation [C]// Ansys Company. Proceedings of the 11th International LS-DYNA® Users Conference. Dearborn, 2010: 39–50. .
    [20] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
    [21] TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.
    [22] 匡志平, 陈少群. 混凝土K&C模型材料参数分析与模拟 [J]. 力学季刊, 2015, 36(3): 517–526. DOI: 10.15959/j.cnki.0254-0053.2015.03.019.

    KUANG Z P, CHEN S Q. Analysis and simulation for the material parameters of K&C concrete model [J]. Chinese Quarterly of Mechanics, 2015, 36(3): 517–526. DOI: 10.15959/j.cnki.0254-0053.2015.03.019.
    [23] SU Q, WU H, FANG Q. Calibration of KCC model for UHPC under impact and blast loadings [J]. Cement and Concrete Composites, 2022, 127: 104401. DOI: 10.1016/j.cemconcomp.2021.104401.
    [24] KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228.(请核实作者信息). DOI: 10.1016/j.ijimpeng.2017.02.016.

    KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228.(请核实作者信息). doi: 10.1016/j.ijimpeng.2017.02.016
    [25] XIAO W F, ANDRAE M, GEBBEKEN N. Air blast TNT equivalence factors of high explosive material PETN for bare charges [J]. Journal of Hazardous Materials, 2019, 377: 152–162. DOI: 10.1016/j.jhazmat.2019.05.078.
    [26] 甘露, 陈力, 宗周红, 等. 近距离爆炸比例爆距的界定标准及荷载模型 [J]. 爆炸与冲击, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.

    GAN L, CHEN L, ZONG Z H, et al. Definition of scaled distance of close-in explosion and blast load calculation model [J]. Explosion and Shock Waves, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.
    [27] HOPKINSON B. British ordnance board minutes [J]. Journal of the Society for Army Historical Research, 1915, 230(57): 88–107.
    [28] TU H, FUNG T C, TAN K H, et al. An analytical model to predict the compressive damage of concrete plates under contact detonation [J]. International Journal of Impact Engineering, 2019, 134: 103344. DOI: 10.1016/j.ijimpeng.2019.103344.
    [29] 刘琦, 翟超辰, 张跃飞, 等. 地面和埋置爆炸土中地冲击作用分区数值模拟及试验研究 [J]. 爆炸与冲击, 2022, 42(8): 082201. DOI: 10.11883/bzycj-2021-0326.

    LIU Q, ZHAI C C, ZHANG Y F, et al. Numerical simulation and test study on ground shock subzones in soil produced by ground and buried explosion [J]. Explosion and Shock Waves, 2022, 42(8): 082201. DOI: 10.11883/bzycj-2021-0326.
    [30] FORBES J W. Shock wave compression of condensed matter: a primer [M]. Berlin: Springer, 2012.
    [31] DOBRATZ B M. LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants: UCRL-52997 [R]. Lawrence: Livermore National Laboratory, 1981.
    [32] 郑哲敏, 解伯民, 刘育魁, 等. 地下核爆炸流体弹塑性计算方案和若干结果 [M]//郑哲敏. 郑哲敏文集. 北京: 科学出版社, 2004.

    ZHENG Z M, XIE B M, LIU Y K, et al. Fluid-plastic calculation scheme and some results of underground nuclear explosion [M]//ZHENG Z M. Beijing: Science Press, 2004.
    [33] 郑哲敏. 爆炸成形模型律 [M]. 北京: 科学出版社, 2004.

    ZHENG Z M. Explosion forming model law [M]. Beijing: Science Press, 2004.
    [34] 李守巨, 何庆志, 费鸿禄. 岩石爆破破坏分区的研究 [J]. 爆破, 1991(1): 16–19.

    LI S J, HE Q Z, FEI H L. Research on the division of rock blasting damage zones [J]. Blasting, 1991(1): 16–19.
    [35] 钱七虎, 王明洋. 岩土中的冲击爆炸效应 [M]. 北京: 国防工业出版社, 2010.

    QIAN Q H, WANG M Y. Impact and explosion effects in rock and soil [M]. Beijing: National Defense Industry Press, 2010.
    [36] 王明洋, 邓宏见, 钱七虎. 岩石中侵彻与爆炸作用的近区问题研究 [J]. 岩石力学与工程学报, 2005, 24(16): 2859–2863. DOI: 10.3321/j.issn:1000-6915.2005.16.008.

    WANG M Y, DENG H J, QIAN Q H. Study on problems of near cavity of penetration and explosion in rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2859–2863. DOI: 10.3321/j.issn:1000-6915.2005.16.008.
    [37] 张志呈. 定向断裂控制爆破机理综述 [J]. 矿业研究与开发, 2000, 20(5): 40–42. DOI: 10.3969/j.issn.1005-2763.2000.05.015.

    ZHANG Z C. Summary of the mechanism of directional fracture controlled blasting [J]. Mining Research and Development, 2000, 20(5): 40–42. DOI: 10.3969/j.issn.1005-2763.2000.05.015.
    [38] 冷振东. 岩石爆破中爆炸能量的释放与传输机制 [D]. 武汉: 武汉大学, 2017.

    LENG Z D. Explosion energy release and transmission mechanism in rock blasting [D]. Wuhan: Wuhan University, 2017.
    [39] MANDAL J, GOEL M D, AGARWAL A K. Surface and buried explosions: an explorative review with recent advances [J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4815–4835. DOI: 10.1007/s11831-021-09553-2.
    [40] AMELSFORT R, WEERHEIJM J T. The failure mode of concrete slabs due to contact charges [R]. John Wiley & Sons, 1994.
    [41] SALAMI M R. Analytical expressions for uniaxial tensile strength of concrete in terms of uniaxial compressive strength [J]. Transportation Research Record, 1992(1335): 52–54.
    [42] 宋守志. 条形药包爆炸时的高速冲击效应 [C]//第四届全国岩石破碎学术讨论会论文集. 成都: 中国岩石力学与工程学会, 中国金属学会采矿学会, 中国土木工程学会隧道及地下工程学会, 1989: 4.

    SONG S Z. High-speed impact effects of linear charge explosion [C]// Proceedings of the 4th National Symposium on Rock Fragmentation. Chengdu: Chinese Society for Rock Mechanics and Engineering, Chinese Society of Metals Mining Society, Chinese Society of Civil Engineering Tunnel and Underground Engineering Society, 1989: 4.
    [43] 王明洋, 李杰, 邓国强. 超高速动能武器钻地毁伤效应与工程防护 [M]. 北京 : 科学出版社, 2021.

    WANG M Y, LI J, DENG G Q. Penetration and destruction effects of hypervelocity kinetic energy weapons and engineering protection [M]. Beijing: Science Press, 2021.
    [44] 李重情, 穆朝民, 石必明. 变埋深条件下混凝土中爆炸应力传播规律的研究 [J]. 振动与冲击, 2017, 36(6): 140–145. DOI: 10.13465/j.cnki.jvs.2017.07.021.

    LI Z Q, MU C M, SHI B M. Investigate on shock stress propagation in concrete at different depths under blasting [J]. Journal of Vibration and Shock, 2017, 36(6): 140–145. DOI: 10.13465/j.cnki.jvs.2017.07.021.
    [45] MU C M, ZHOU H, MA H F. Prediction method for ground shock parameters of explosion in concrete [J]. Construction and Building Materials, 2021, 291: 123372. DOI: 10.1016/j.conbuildmat.2021.123372.
    [46] LEONG E C, ANAND S, CHEONG H K, et al. Re-examination of peak stress and scaled distance due to ground shock [J]. International Journal of Impact Engineering, 2007, 34(9): 1487–1499. DOI: 10.1016/j.ijimpeng.2006.10.009.
    [47] YANKELEVSKY D Z, KARINSKI Y S, FELDGUN V R. Re-examination of the shock wave’s peak pressure attenuation in soils [J]. International Journal of Impact Engineering, 2011, 38(11): 864–881. DOI: 10.1016/j.ijimpeng.2011.05.011.
    [48] FAN Y, CHEN L, LI Z, et al. Modeling the blast load induced by a close-in explosion considering cylindrical charge parameters [J]. Defence Technology, 2023, 24: 83–108. DOI: 10.1016/j.dt.2022.02.005.
    [49] US Army Engineer Waterways Experiment Station. Fundamentals of protective design for conventional weapons [M]. Washington: US Department of the Army, 1986.
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  14
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-18
  • 修回日期:  2024-12-19
  • 网络出版日期:  2024-12-20

目录

    /

    返回文章
    返回