基于超声导波的锂离子电池碰撞监测方法

舒淙昊 杨成 童伟豪 李洁 刘冰河

舒淙昊, 杨成, 童伟豪, 李洁, 刘冰河. 基于超声导波的锂离子电池碰撞监测方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0351
引用本文: 舒淙昊, 杨成, 童伟豪, 李洁, 刘冰河. 基于超声导波的锂离子电池碰撞监测方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0351
SHU Conghao, YANG Cheng, TONG Weihao, LI Jie, LIU Binghe. Deformation and collision monitoring of lithium-ion batteries based on ultrasonic guided wave signals[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0351
Citation: SHU Conghao, YANG Cheng, TONG Weihao, LI Jie, LIU Binghe. Deformation and collision monitoring of lithium-ion batteries based on ultrasonic guided wave signals[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0351

基于超声导波的锂离子电池碰撞监测方法

doi: 10.11883/bzycj-2024-0351
基金项目: 国家自然科学基金(12272072);重庆市自然科学基金(CSTB2024NSCQ-LZX0145);智能汽车安全技术全国重点实验室开放基金(IVSTSKL-202304)
详细信息
    作者简介:

    舒淙昊(2001- ),男,硕士研究生,shuconghao@stu.cqu.edu.cn

    通讯作者:

    刘冰河(1992- ),男,博士,副教授,博士生导师,liubinghe@cqu.edu.cn

  • 中图分类号: O384

Deformation and collision monitoring of lithium-ion batteries based on ultrasonic guided wave signals

  • 摘要: 针对电池发生碰撞后的未知变形,目前仅通过电压、温度、电流等物理信号等方法感知异常电池,缺乏直接的电池形变监测手段。为了弥补这一不足,本文中利用小型压电片,并基于超声导波实现锂离子电池形变和碰撞监测。首先,搭建了针对锂离子电池不同加载的实验平台,开展了准静态、微碰撞实验;然后,对实验结果进行了讨论,阐明了在不同加载下超声信号的变化规律。结果表明:在电池准静态实验中,超声幅值信号与电池变形程度呈负相关关系;在电池落球冲击实验中,碰撞冲击会影响改变超声的幅值与能量积分,可以以此为依据来判断电池是否发生碰撞。最后,建立了大变形下超声与电池变形失效监测的映射关系,提出了碰撞变形下基于超声传感器的判定方法。
  • 图  1  实验设备

    Figure  1.  Experimental equipment

    图  2  不同方向的压缩实验设置

    Figure  2.  Experimental setup for compression in different directions

    图  3  冲击实验示意图

    Figure  3.  Schematic diagram of impact experiment

    图  4  电池受压前后超声幅值对比

    Figure  4.  Comparison of ultrasonic amplitudes before and after battery compression

    图  5  压痕实验超声信号变化

    Figure  5.  Variation of ultrasonic signals in indentation experiment

    图  6  0%SOC电池在压痕实验中各项信号的变化

    Figure  6.  Signal variation of 0% SOC batteries in indentation experiments

    图  7  不同方向压缩实验结果

    Figure  7.  Experimental results of compression in different directions

    图  8  不同SOC下电池压痕实验结果

    Figure  8.  Results of batteries in indentation experiments at different SOCs

    图  9  电池失效拟合模型

    Figure  9.  Battery failure fitting model

    图  10  100 kHz下电池碰撞前后超声信号对比

    Figure  10.  Comparison of the ultrasonic signals of battery before and after collision at 100 kHz

  • [1] LIU Y, PAN Y J, WANG H C, et al. Mechanical issues of lithium-ion batteries in road traffic conditions: a review [J]. Thin-Walled Structures, 2024, 201: 111985. DOI: 10.1016/j.tws.2024.111985.
    [2] CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery [J]. Journal of Power Sources, 2020, 478: 228649. DOI: 10.1016/j.jpowsour.2020.228649.
    [3] LIU B H, ZHAO H, YU H L, et al. Multiphysics computational framework for cylindrical lithium-ion batteries under mechanical abusive loading [J]. Electrochimica Acta, 2017, 256: 172–84. DOI: 10.1016/j.electacta.2017.10.045.
    [4] HU L L, ZHANG Z W, ZHOU M Z, et al. Crushing behaviors and failure of packed batteries [J]. International Journal of Impact Engineering, 2020, 143: 103618. DOI: 10.1016/j.ijimpeng.2020.103618.
    [5] LIU B H, JIA Y K, LI J N, et al. Multiphysics coupled computational model for commercialized Si/graphite composite anode [J]. Journal of Power Sources, 2020, 450: 227667. DOI: 10.1016/j.jpowsour.2019.227667.
    [6] LIU B H, JIA Y K, YUAN C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review [J]. Energy Storage Materials, 2020, 24: 85–112. DOI: 10.1016/j.ensm.2019.06.036.
    [7] LAI W J, ALI M Y, PAN J. Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions [J]. Journal of Power Sources, 2014, 248: 789–808. DOI: 10.1016/j.jpowsour.2013.09.128.
    [8] JIANG S, SHI F Y, LI J, et al. Internal short circuit and dynamic response of large-format prismatic lithium-ion battery under mechanical abuse [J]. Journal of Electrochemical Energy Conversion and Storage, 2024, 22(2): 1–24. DOI: 10.1115/1.4066056.
    [9] XIA Y, WIERZBICKI T, SAHRAEI E, et al. Damage of cells and battery packs due to ground impact [J]. Journal of Power Sources, 2014, 267: 78–97. DOI: 10.1016/j.jpowsour.2014.05.078.
    [10] SAHRAEI E, HILL R, WIERZBICKI T. Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity [J]. Journal of Power Sources, 2012, 201: 307–21. DOI: 10.1016/j.jpowsour.2011.10.094.
    [11] GREVE L, FEHRENBACH C. Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical lithium ion battery cells [J]. Journal of Power Sources, 2012, 214: 377–85. DOI: 10.1016/j.jpowsour.2012.04.055.
    [12] LAI W-J, ALI M Y, PAN J. Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions [J]. Journal of Power Sources, 2014, 245: 609–23. DOI: 10.1016/j.jpowsour.2013.06.134.
    [13] MALEKI H, HOWARD J N. Internal short circuit in Li-ion cells [J]. Journal of Power Sources, 2009, 191(2): 568–74. DOI: 10.1016/j.jpowsour.2009.02.070.
    [14] MAO B B, CHEN H D, CUI Z X, et al. Failure mechanism of the lithium ion battery during nail penetration [J]. International Journal of Heat and Mass Transfer, 2018, 122: 1103–15. DOI: 10.1016/j.ijheatmasstransfer.2018.02.036.
    [15] KISTERS T, SAHRAEI E, WIERZBICKI T. Dynamic impact tests on lithium-ion cells [J]. International Journal of Impact Engineering, 2017, 108: 205–16. DOI: 10.1016/j.ijimpeng.2017.04.025.
    [16] PAN Z X, LI W, XIA Y. Experiments and 3D detailed modeling for a pouch battery cell under impact loading [J]. Journal of Energy Storage, 2020, 27: 101016. DOI: 10.1016/j.est.2019.101016.
    [17] CHEN X P, YUAN Q, WANG T, et al. Experimental study on the dynamic behavior of prismatic lithium-ion battery upon repeated impact [J]. Engineering Failure Analysis, 2020, 115: 104667. DOI: 10.1016/j.engfailanal.2020.104667.
    [18] XIA Y, CHEN G H, ZHOU Q, et al. Failure behaviours of 100% SOC lithium-ion battery modules under different impact loading conditions [J]. Engineering Failure Analysis, 2017, 82: 149–60. DOI: 10.1016/j.engfailanal.2017.09.003.
    [19] LIU Y J, XIA Y, XING B B, et al. Mechanical-electrical-thermal responses of lithium-ion pouch cells under dynamic loading: A comparative study between fresh cells and aged ones [J]. International Journal of Impact Engineering, 2022, 166: 104237. DOI: 10.1016/j.ijimpeng.2022.104237.
    [20] ZHENG G, TAN L L, TIAN G L, et al. Dynamic crashing behaviors of prismatic lithium-ion battery cells [J]. Thin-Walled Structures, 2023, 192: 110902. DOI: 10.1016/j.tws.2023.110902.
    [21] ZHOU M Z, HU L L, CHEN S R, et al. Different mechanical-electrochemical coupled failure mechanism and safety evaluation of lithium-ion pouch cells under dynamic and quasi-static mechanical abuse [J]. Journal of Power Sources, 2021, 497: 229897. DOI: 10.1016/j.jpowsour.2021.229897.
    [22] XU J, LIU B H, WANG X Y, et al. Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies [J]. Applied Energy, 2016, 172: 180–9. DOI: 10.1016/j.apenergy.2016.03.108.
    [23] JIA Y K, YIN S, LIU B H, et al. Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading [J]. Energy, 2019, 166: 951–60. DOI: 10.1016/j.energy.2018.10.142.
    [24] AVDEEV I, GILAKI M. Structural analysis and experimental characterization of cylindrical lithium-ion battery cells subject to lateral impact [J]. Journal of Power Sources, 2014, 271: 382–91. DOI: 10.1016/j.jpowsour.2014.08.014.
    [25] ZHANG C, SANTHANAGOPALAN S, SPRAGUE M A, et al. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse [J]. Journal of Power Sources, 2015, 290: 102–13. DOI: 10.1016/j.jpowsour.2015.04.162.
    [26] ZHU J E, ZHANG X W, SAHRAEI E, et al. Deformation and failure mechanisms of 18650 battery cells under axial compression [J]. Journal of Power Sources, 2016, 336: 332–40. DOI: 10.1016/j.jpowsour.2016.10.064.
    [27] WANG L B, YIN S, XU J. A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: From cell deformation to short-circuit onset [J]. Journal of Power Sources, 2019, 413: 284–92. DOI: 10.1016/j.jpowsour.2018.12.059.
    [28] WANG L B, DUAN X D, LIU B H, et al. Deformation and failure behaviors of anode in lithium-ion batteries: model and mechanism [J]. Journal of Power Sources, 2020, 448: 227468. DOI: 10.1016/j.jpowsour.2019.227468.
    [29] 李红刚, 张超, 曹俊超, 等. 锂离子电池碰撞安全仿真方法的研究进展与展望 [J]. 机械工程学报, 2022, 58(24): 121–44. DOI: 10.3901/JME.2022.24.121.

    LI H G, ZHANG C, CAO J C, et al. Research progress and prospect of collision safety simulation methods for lithium-ion batteries [J]. Journal of Mechanical Engineering, 2022, 58(24): 121–44. DOI: 10.3901/JME.2022.24.121.
    [30] TIAN J Q, WANG Y J, CHEN Z H. An improved single particle model for lithium-ion batteries based on main stress factor compensation [J]. Journal of Cleaner Production, 2021, 278. DOI: 10.1016/j.jclepro.2020.123456.
    [31] SAHRAEI E, CAMPBELL J, WIERZBICKI T. Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions [J]. Journal of Power Sources, 2012, 220: 360–72. DOI: 10.1016/j.jpowsour.2012.07.057.
    [32] XU J, LIU B H, WANG L B, et al. Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing [J]. Engineering Failure Analysis, 2015, 53: 97–110. DOI: 10.1016/j.engfailanal.2015.03.025.
    [33] YUAN C H, WANG L B, YIN S, et al. Generalized separator failure criteria for internal short circuit of lithium-ion battery [J]. Journal of Power Sources, 2020, 467: 228360. DOI: 10.1016/j.jpowsour.2020.228360.
    [34] WANG H C, PAN Y J, LIU X, et al. Criteria and design guidance for lithium-ion battery safety from a material perspective [J]. Journal of Materials Chemistry A, 2022, 10(12): 6538–50. DOI: 10.1039/d1ta09291j.
    [35] JIA Y K, GAO X, MOUILLET J B, et al. Effective thermo-electro-mechanical modeling framework of lithium-ion batteries based on a representative volume element approach [J]. Journal of Energy Storage, 2021, 33: 102090. DOI: 10.1016/j.est.2020.102090.
    [36] LI H G, LIU B H, ZHOU D, et al. Coupled mechanical-electrochemical-thermal study on the short-circuit mechanism of lithium-ion batteries under mechanical abuse [J]. Journal of The Electrochemical Society, 2020, 167(12): 120501. DOI: 10.1149/1945-7111/aba96f.
    [37] YANG Z C, LI J Q, JIANG H F, et al. A novel model-based damage detection method for lithium-ion batteries [J]. Journal of Energy Storage, 2021, 42: 102970. DOI: 10.1016/j.est.2021.102970.
    [38] JIA Y K, GAO X, MA L, et al. Comprehensive Battery Safety Risk Evaluation: Aged Cells versus Fresh Cells Upon Mechanical Abusive Loadings [J]. Advanced Energy Materials, 2023, 13(24): 2300368. DOI: 10.1002/aenm.202300368.
    [39] CAI Z H, MENDOIZA S, GOODMAN J, et al. the influence of cycling, temperature, and electrode gapping on the safety of prismatic lithium-ion batteries [J]. Journal of The Electrochemical Society, 2020, 167(16): 160515. DOI: 10.1149/1945-7111/abcabc.
    [40] MAGNIER L, LECARME L, ALLOIN F, et al. Tomography imaging of lithium electrodeposits using neutron, synchrotron X-ray, and laboratory X-ray sources: a comparison [J]. Frontiers in Energy Research, 2021, 9: 657712. DOI: 10.3389/fenrg.2021.657712.
    [41] BOYCE A M, MARTíNEZ-PAñEDA E, WADE A, et al. Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling [J]. Journal of Power Sources, 2022, 526: 231119. DOI: 10.1016/j.jpowsour.2022.231119.
    [42] ZINTH V, VON LÜDERS C, HOFMANN M, et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction [J]. Journal of Power Sources, 2014, 271: 152–9. DOI: 10.1016/j.jpowsour.2014.07.168.
    [43] BOBRIKOV I A, SAMOYLOVA N Y, BALAGUROV D A, et al. Neutron diffraction analysis of structural transformations in lithium-ion batteries [J]. Russian Journal of Electrochemistry, 2017, 53(2): 178–86. DOI: 10.1134/S1023193517020033.
    [44] VOYIADJIS G Z, AKBARI E, KATTAN P I. Damage model for lithium-ion batteries with experiments and simulations [J]. Journal of Energy Storage, 2023, 57: 106285. DOI: 10.1016/j.est.2022.106285.
    [45] ZIESCHE R F, KARDJILOV N, KOCKELMANN W, et al. Neutron imaging of lithium batteries [J]. Joule, 2022, 6(1): 35–52. DOI: 10.1016/j.joule.2021.12.007.
    [46] YANG H X, SHAN C F, KOLEN A F, et al. Medical instrument detection in ultrasound: a review [J]. Artificial Intelligence Review, 2022, 56(5): 4363–402. DOI: 10.1007/s10462-022-10287-1.
    [47] LIU W J, HU P, XIAO J F, et al. High precision detection of artificial defects in additively manufactured Ti6Al4V alloy via laser ultrasonic testing [J]. Journal of Materials Research and Technology, 2024, 30: 8740–8. DOI: 10.1016/j.jmrt.2024.05.140.
    [48] LIAN Y D, DU F J, XIE L Y, et al. Application of laser ultrasonic testing technology in the characterization of material Properties: a review [J]. Measurement, 2024, 234: 114855. DOI: 10.1016/j.measurement.2024.114855.
    [49] XUE Z Q, XU Y D, HU M, et al. Systematic review: ultrasonic technology for detecting rail defects [J]. Construction and Building Materials, 2023, 368: 130409. DOI: 10.1016/j.conbuildmat.2023.130409.
    [50] MENG K P, CHEN X P, ZHANG W, et al. A robust ultrasonic characterization methodology for lithium-ion batteries on frequency-domain damping analysis [J]. Journal of Power Sources, 2022, 547: 232003. DOI: 10.1016/j.jpowsour.2022.232003.
    [51] WEI Y L, YAN Y Z, ZHANG C, et al. State estimation of lithium-ion batteries based on the initial rise time feature of ultrasonic signals [J]. Journal of Power Sources, 2023, 581: 233497. DOI: 10.1016/j.jpowsour.2023.233497.
    [52] LADPLI P, KOPSAFTOPOULOS F, CHANG F K. Estimating state of charge and health of lithium-ion batteries with guided waves using built-in piezoelectric sensors/actuators [J]. Journal of Power Sources, 2018, 384: 342–54. DOI: 10.1016/j.jpowsour.2018.02.056.
    [53] POPP H, KOLLER M, KELLER S, et al. State estimation approach of lithium-ion batteries by simplified ultrasonic time-of-flight measurement [J]. IEEE Access, 2019, 7: 170992–1000. DOI: 10.1109/access.2019.2955556.
    [54] ZHAO G Q, LIU Y, LIU G, et al. State-of-charge and state-of-health estimation for lithium-ion battery using the direct wave signals of guided wave [J]. Journal of Energy Storage, 2021, 39: 102657. DOI: 10.1016/j.est.2021.102657.
    [55] LIU B H, TONG W H, CAO Y Z, et al. SOC estimation method based on the ultrasonic guided waves considering the significant effect of charge/discharge rate [J]. Journal of Energy Storage, 2024, 87: 111434. DOI: 10.1016/j.est.2024.111434.
    [56] LI X Y, HUA W, WU C X, et al. State estimation of a lithium-ion battery based on multi-feature indicators of ultrasonic guided waves [J]. Journal of Energy Storage, 2022, 56: 106113. DOI: 10.1016/j.est.2022.106113.
    [57] TIAN Y, YANG S Y, ZHANG R N, et al. State of charge estimation of lithium-ion batteries based on ultrasonic guided waves by chirped signal excitation [J]. Journal of Energy Storage, 2024, 84: 110897. DOI: 10.1016/j.est.2024.110897.
    [58] REICHMANN B, SHARIF-KHODAEI Z. Ultrasonic guided waves as an indicator for the state-of-charge of Li-ion batteries [J]. Journal of Power Sources, 2023, 576. DOI: 10.1016/j.jpowsour.2023.233189.
    [59] LI X Y, WU C X, FU C, et al. State Characterization of lithium-ion battery based on ultrasonic guided wave scanning [J]. Energies, 2022, 15(16): 6027. DOI: 10.3390/en15166027.
    [60] GAO J, ZHANG L H, LYU Y, et al. Ultrasonic guided wave measurement and modeling analysis of the state of charge for lithium-ion battery [J]. Journal of Energy Storage, 2023, 72: 108384. DOI: 10.1016/j.est.2023.108384.
    [61] CIESZKO M, DRELICH R, PAKULA M. Acoustic wave propagation in equivalent fluid macroscopically inhomogeneous materials [J]. The Journal of the Acoustical Society of America, 2012, 132(5): 2970–7. DOI: 10.1121/1.4756949.
    [62] CAO Y Z, WANG H C, LIU B H, et al. Modeling, validation, and analysis of swelling behaviors of lithium-ion batteries [J]. Journal of Energy Storage, 2023, 74: 109499. DOI: 10.1016/j.est.2023.109499.
    [63] LIAO Z Y, LI H G, WANG H C, et al. Mesoscale mechanical models for active materials in lithium-ion batteries using the multi-particle finite element method [J]. Extreme Mechanics Letters, 2024, 69: 102154. DOI: 10.1016/j.eml.2024.102154.
  • 加载中
图(10)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  5
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-19
  • 修回日期:  2024-11-21
  • 网络出版日期:  2024-11-25

目录

    /

    返回文章
    返回