低温循环老化航空锂离子电池热失控的爆炸危险性

杨娟 魏陟珣 牛江昊 闫晓亮 张青松

杨娟, 魏陟珣, 牛江昊, 闫晓亮, 张青松. 低温循环老化航空锂离子电池热失控的爆炸危险性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0352
引用本文: 杨娟, 魏陟珣, 牛江昊, 闫晓亮, 张青松. 低温循环老化航空锂离子电池热失控的爆炸危险性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0352
YANG Juan, WEI Zhixun, NIU Jianghao, YAN Xiaoliang, ZHANG Qingsong. Explosion hazard of thermal runaway in aviation lithium-ion batteries under low-temperature cycling aging conditions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0352
Citation: YANG Juan, WEI Zhixun, NIU Jianghao, YAN Xiaoliang, ZHANG Qingsong. Explosion hazard of thermal runaway in aviation lithium-ion batteries under low-temperature cycling aging conditions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0352

低温循环老化航空锂离子电池热失控的爆炸危险性

doi: 10.11883/bzycj-2024-0352
基金项目: 国家自然科学基金(U2033204);深圳市创新创业计划科技重大专项(xxxx);天津市城市空中交通系统技术与装备重点实验室开放基金(TJKL-UAM-202302);中央高校基本科研业务费项目(3122023025)
详细信息
    作者简介:

    杨 娟(1983- ),女,硕士,副教授,haishi_yj11@126.com

    通讯作者:

    牛江昊(1998- ),男,博士研究生,449076343@qq.com

    张青松(1977- ),男,博士,教授,nkzqsong@126.com

  • 中图分类号: O389

Explosion hazard of thermal runaway in aviation lithium-ion batteries under low-temperature cycling aging conditions

  • 摘要: 鉴于全寿命周期内循环老化后航空锂离子电池热失控反应较新电池有显著差异,且低温环境对锂离子电池系统重大失效危险性影响更加贴近低空实际飞行场景,自主搭建了锂离子电池热失控及气体爆炸测试平台,采用锂离子电池的热失控时间、表面峰值温度和热失控超压及热失控气体的爆炸极限、压力及温度为关键参数,探讨低温(−10 ℃)循环老化对锂离子电池热失控爆炸危险性的影响。实验结果显示,常温循环老化锂离子电池较新电池热失控时间明显提前和电池安全阀开启到完全热失控的时间间隔明显增长,分别为559.86和122.56 s,且热失控气体爆炸下限升高30.95%,气体爆炸压力降低至258.6 kPa;低温环境因素则会使老化锂离子电池热失控的爆炸危险性发生显著变化,导致热失控时间提前至412.38 s,安全阀打开到完全热失控的时间间隔缩短至56.66 s,并使热失控气体爆炸下限降低20.49%,爆炸压力高达319.5 kPa。
  • 图  1  锂离子电池热失控危险性测试系统

    Figure  1.  Test system for thermal runaway hazard of lithium-ion batteries

    图  2  25℃环境锂离子电池放电电压-容量曲线

    Figure  2.  Voltage-capacity curves of lithium-ion battery discharge in 25°C environment

    图  3  不同实验工况下电池舱内部气压变化曲线

    Figure  3.  Pressure fluctuation profiles within the lithium-ion battery enclosure under different operating conditions

    图  4  不同实验工况下热失控锂离子电池表面温度随时间的变化

    Figure  4.  Change of temperature with time at the surface of thermal runaway batteries under different experimental conditions

    图  5  不同实验工况下电池舱内气压随时间的变化

    Figure  5.  Change of gas pressure with time inside the battery compartment under different experimental conditions

    图  6  热失控气体爆炸极限随环境温度和循环圈数的变化

    Figure  6.  Variation of explosion limits for thermal runaway gases with environmental temperature and cycle number

    图  7  热失控气体在气体舱内的爆炸火焰

    Figure  7.  Explosion flame of thermal runaway gas in the gas chamber

    图  8  不同工况下热失控气体爆炸火焰的峰值温度

    Figure  8.  Peak temperatures of explosion flame of thermal runaway gas under different conditions

    图  9  不同工况下热失控气体爆炸峰值压力

    Figure  9.  Peak pressures of thermal runaway gas explosion under different conditions

    表  1  实验工况

    Table  1.   Experimental operating conditions

    充放电环境温度/℃ 充放电循环/圈
    −10 1, 25, 50, 75
    25 1, 25, 50, 75
    下载: 导出CSV

    表  2  不同工况下电池发生热失控的关键时间参数

    Table  2.   Key temporal parameters for thermal runaway of batteries under different operating conditions

    工况 tTR/s Δt/s 工况 tTR/s Δt/s
    充放电环境温度/℃ 充放电循环/圈 充放电环境温度/℃ 充放电循环/圈
    25 1 474.80 96.16 −10 1 523.56 107.70
    25 488.18 99.88 25 495.28 110.42
    50 520.92 101.14 50 419.90 57.32
    75 559.86 122.56 75 412.38 56.66
    下载: 导出CSV

    表  3  不同实验工况下电池舱内气体峰值压力

    Table  3.   Peak gas pressure inside the battery compartment under different experimental conditions

    环境温度/℃ 电池舱内峰值压力/kPa
    循环1圈 循环25圈 循环50圈 循环75圈
    25 580.0 632.7 646.7 651.4
    −10 574.3 559.5 579.3 634.4
    下载: 导出CSV

    表  4  不同工况爆炸火焰不同位置的温度

    Table  4.   Temperatures at different positions of explosion flame under different conditions

    工况 爆炸火焰温度/℃
    充放电环境温度/℃ 充放电循环/圈 中心 左侧 后部 右侧
    251181.2165.1198.8172.9
    25184.4151.9177.7157.5
    50186.5158.9184.3151.4
    75180.8157.4183.8168.0
    −101188.1154.4179.9155.1
    25174.6152.3173.7145.4
    50189.7163.4182.2169.1
    75175.4146.4169.8152.2
    下载: 导出CSV
  • [1] EATON J, NARAGHI M, BOYD J G. Regional pathways for all-electric aircraft to reduce aviation sector greenhouse gas emissions [J]. Applied Energy, 2024, 373: 123831. DOI: 10.1016/j.apenergy.2024.123831.
    [2] 杨凤田, 范振伟, 项松, 等. 中国电动飞机技术创新与实践观点 [J]. 航空学报, 2021, 42(3): 624619. DOI: 10.7527/S1000-6893.2020.24619.

    YANG F T, FAN Z W, XlANG S, et al. Technical innovation and practice of electric aircraft in China [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 624619. DOI: 10.7527/S1000-6893.2020.24619.
    [3] SISMANIDOU A, TARRADELLAS J, SUAU-SANCHEZ P, et al. Breaking barriers: an assessment of the feasibility of long-haul electric flights [J]. Journal of Transport Geography, 2024, 115: 103797. DOI: 10.1016/j.jtrangeo.2024.103797.
    [4] WEI H L, LOU B C, ZHANG Z Z, et al. Autonomous navigation for eVTOL: review and future perspectives [J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(2): 4145–4171. DOI: 10.1109/TIV.2024.3352613.
    [5] 邓景辉. 电动垂直起降飞行器的技术现状与发展 [J]. 航空学报, 2024, 45(5): 529937. DOI: 10.7527/S1000-6893.2023.29937.

    DENG J H. Technical status and development of electric vertical take-off and landing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529937. DOI: 10.7527/S1000-6893.2023.29937.
    [6] RAJENDRAN S, SRINIVAS S. Air taxi service for urban mobility: a critical review of recent developments, future challenges, and opportunities [J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 143: 102090. DOI: 10.1016/j.tre.2020.102090.
    [7] BARRERA T P, BOND J R, BRADLEY M, et al. Next-generation aviation Li-ion battery technologies: enabling electrified aircraft [J]. The Electrochemical Society Interface, 2022, 31(3): 69–74. DOI: 10.1149/2.F10223IF.
    [8] BUTICCHI G, WHEELER P, BOROYEVICH D. The more-electric aircraft and beyond [J]. Proceedings of the IEEE, 2023, 111(4): 356–370. DOI: 10.1109/JPROC.2022.3152995.
    [9] LI H G, ZHOU D, ZHANG M H, et al. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse [J]. Energy, 2023, 263: 126027. DOI: 10.1016/j.energy.2022.126027.
    [10] XIAO Y, YANG F Q, GAO Z H, et al. Review of mechanical abuse related thermal runaway models of lithium-ion batteries at different scales [J]. Journal of Energy Storage, 2023, 64: 107145. DOI: 10.1016/j.est.2023.107145.
    [11] 李谦, 于金山, 刘盛终, 等. 不同因素影响下锂离子电池热失控演变特征及危害性综述 [J]. 消防科学与技术, 2023, 42(11): 1482–1487. DOI: 10.3969/j.issn.1009-0029.2023.11.006.

    LI Q, YU J S, LIU S Z, et al. Review on the characteristics and hazards of lithium-ion battery thermal runaway under various conditions [J]. Fire Science and Technology, 2023, 42(11): 1482–1487. DOI: 10.3969/j.issn.1009-0029.2023.11.006.
    [12] WORKU B E, ZHENG S M, WANG B. Review of low-temperature lithium-ion battery progress: new battery system design imperative [J]. International Journal of Energy Research, 2022, 46(11): 14609–14626. DOI: 10.1002/er.8194.
    [13] NG B, COMAN P T, FAEGH E, et al. Low-temperature lithium plating/corrosion hazard in lithium-ion batteries: electrode rippling, variable states of charge, and thermal and nonthermal runaway [J]. ACS Applied Energy Materials, 2020, 3(4): 3653–3664. DOI: 10.1021/acsaem.0c00130.
    [14] FU Y Y, LU S, SHI L, et al. Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure [J]. Energy, 2018, 161: 38–45. DOI: 10.1016/j.energy.2018.06.129.
    [15] ZHANG Q S, NIU J H, YANG J, et al. In-situ explosion limit analysis and hazards research of vent gas from lithium-ion battery thermal runaway [J]. Journal of Energy Storage, 2022, 56: 106146. DOI: 10.1016/j.est.2022.106146.
    [16] DENG J, CHEN B H, LU J Z, et al. Thermal runaway and combustion characteristics, risk and hazard evaluation of lithium-iron phosphate battery under different thermal runaway triggering modes [J]. Applied Energy, 2024, 368: 123451. DOI: 10.1016/j.apenergy.2024.123451.
    [17] BAIRD A R, ARCHIBALD E J, MARR K C, et al. Explosion hazards from lithium-ion battery vent gas [J]. Journal of Power Sources, 2020, 446: 227257. DOI: 10.1016/j.jpowsour.2019.227257.
    [18] 杨娟, 牛江昊, 张青松. 循环老化锂离子电池热失控气体原位爆炸极限实验分析 [J]. 航空学报, 2023, 44(23): 428529. DOI: 10.7527/S1000-6893.2023.28529.

    YANG J, NIU J H, ZHANG Q S, et al. In-situ explosion limit of thermal runaway gas explosion in cyclic aging lithium-ion batteries: experimental analysis [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 428529. DOI: 10.7527/S1000-6893.2023.28529.
    [19] ZHANG Q S, YANG K B, NIU J H, et al. Research on the lower explosion limit of thermal runaway gas in lithium batteries under high-temperature and slight overcharge conditions [J]. Journal of Energy Storage, 2024, 79: 109976. DOI: 10.1016/j.est.2023.109976.
    [20] YANG J, LIU W H, ZHAO H Y, et al. Experimental investigation of lithium-ion batteries thermal runaway propagation consequences under different triggering modes [J]. Aerospace, 2024, 11(6): 438. DOI: 10.3390/aerospace11060438.
    [21] 杨娟, 胡佳宁, 佟佳成, 等. 航空锂电池热失控高温喷射冲击实验研究 [J]. 航空学报, 2025, 46(14): 430965. DOI: 10.7527/S1000-6893.2024.30965.

    YANG J, HU J N, TONG J C, et al. Experimental study on high-temperature jet impact induced by thermal runaway in aviation lithium-ion batteries [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(14): 430965. DOI: 10.7527/S1000-6893.2024.30965.
    [22] German Institute for Standardization. Determination of explosion limits of gases and vapours at elevated pressures, elevated temperatures or with oxidizers other than air: DIN EN 17624: 2022 [S]. German: German Institute for Standardization, 2022-03-01.
    [23] XIAO Y, ZHAO J R, YIN L, et al. Staged thermal runaway behaviours of three typical lithium-ion batteries for hazard prevention [J]. Journal of Thermal Analysis and Calorimetry, 2024, 149(18): 10321–10333. DOI: 10.1007/s10973-024-13080-0.
    [24] 韩鑫. 低温环境下锂离子电池析锂特性及其影响研究[D]. 北京: 北京交通大学, 2021. DOI: 10.26944/d.cnki.gbfju.2021.002428.

    HAN X. Research on the characteristics and influence of lithium plating in lithium-ion batteries at low temperature[D]. Beijing: Beijing Jiaotong University, 2021. DOI: 10.26944/d.cnki.gbfju.2021.002428.
    [25] 张青松, 包防卫, 牛江昊. 环境压力对锂电池热失控产气及爆炸风险的影响 [J]. 储能科学与技术, 2023, 12(7): 2263–2270. DOI: 10.19799/j.cnki.2095-4239.2023.0192.

    ZHANG Q S, BAO F W, NIU J H. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263–2270. DOI: 10.19799/j.cnki.2095-4239.2023.0192.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  18
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-19
  • 修回日期:  2024-12-04
  • 网络出版日期:  2024-12-17

目录

    /

    返回文章
    返回