O2/CO2气氛下CO2对乙炔可燃下限的影响

李家瑶 梁容真 胡贤忠

李家瑶, 梁容真, 胡贤忠. O2/CO2气氛下CO2对乙炔可燃下限的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0359
引用本文: 李家瑶, 梁容真, 胡贤忠. O2/CO2气氛下CO2对乙炔可燃下限的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0359
LI Jiayao, LIANG Rongzhen, HU Xianzhong. Study of the effect of CO2 on the lower flammability limit of acetylene in O2/CO2 atmosphere[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0359
Citation: LI Jiayao, LIANG Rongzhen, HU Xianzhong. Study of the effect of CO2 on the lower flammability limit of acetylene in O2/CO2 atmosphere[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0359

O2/CO2气氛下CO2对乙炔可燃下限的影响

doi: 10.11883/bzycj-2024-0359
基金项目: 辽宁省自然科学基金项目(2023-1SBA-100);中央高校基本科研业务费(N2425018)
详细信息
    作者简介:

    李家瑶(1999- ),男,硕士研究生,2201654@stu.neu.edu.cn

    通讯作者:

    胡贤忠(1984- ),男,博士,副教授,huxz@smm.neu.edu.cn

  • 中图分类号: O389; TK16

Study of the effect of CO2 on the lower flammability limit of acetylene in O2/CO2 atmosphere

  • 摘要: 为探究清洁燃料乙炔在O2/CO2气氛下的可燃下限,在5 L圆柱体爆炸反应装置中进行实验,测得了乙炔的可燃下限。随着CO2的体积分数从14%增加到85%,乙炔的可燃下限从2.64%增长到3.93%,在较小的范围内呈线性增加。烷烃、烯烃和炔烃的可燃下限依次降低,表明炔烃具有更大燃烧范围。基于极限层流速度法计算模型,建立了适用于乙炔可燃下限的预测模型。通过实验数据,验证了该模型的可靠性,采用该模型讨论了CO2的热力学、化学、输运效应对可燃下限的影响。结果表明:热力学效应的平均占比约为64%,化学效应占比35%,输运效应占比1%。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of the experimental setup

    图  2  极限层流燃烧速度法原理图

    Figure  2.  Schematic diagram of the limiting laminar burning velocity method

    图  3  可燃下限的实验值

    Figure  3.  Experimental values of lower flammability limit

    图  4  可燃下限的实验值(点)及预测值(线)

    Figure  4.  Experimental (point) and predicted (line) values of lower flammability limits

    图  5  浮力燃烧力变化曲线

    Figure  5.  Change curve of buoyancy combustion force

    图  6  不同稀释气氛下的可燃下限

    Figure  6.  Lower flammability limits in different dilution atmospheres

    图  7  不同CO2浓度时3种效应对可燃下限的影响

    Figure  7.  Influence of three effects on the lower flammability limit at different CO2 concentrations

    图  8  定压比热容随温度、稀释气占比变化的曲面

    Figure  8.  Constant-pressure specific heat capacity with temperature, dilution gas percentage change surface

    图  9  不同CO2浓度及不同气氛可燃下限处的敏感性分析

    Figure  9.  Sensitivity analysis at different CO2 concentrations and lower flammability limits of different atmospheres

    图  10  三体效应对可燃下限的影响

    Figure  10.  Three-body effect on lower flammability limits

    图  11  不同气氛下主要自由基OH、O、H摩尔分数变化曲线

    Figure  11.  Variation curves of OH, O and H molar fractions of major radicals under different atmospheres

    表  1  乙炔常用燃烧反应机理

    Table  1.   Common Combustion Reaction Mechanisms for Acetylene

    序号 机理名称 年份 反应/物种数量
    1 USC Mech II 2007 784/112
    2 GRI-Mech 3.0 1999 325/53
    3 Davis 2017 469/71
    4 San Diego 2014 247/50
    5 Wang 1999 529/75
    下载: 导出CSV

    表  2  自由基峰值摩尔分数比例

    Table  2.   Ratio of peak molar fractions of free radicals

    稀释气浓度/% 自由基峰值摩尔分数比
    H_CO2∶H_FCO2 O_CO2∶O_FCO2 OH_CO2∶OH_FCO2 H_CO2∶H_MCO2 O_CO2∶O_MCO2 OH_CO2∶OH_MCO2
    14 0.928 1.001 1.03 0.881 0.983 1.042
    52 0.769 0.959 1.07 0.681 0.881 1.12
    85 0.79 0.805 1.038 0.76 0.702 1.251
    下载: 导出CSV
  • [1] 李旭东, 谭青博, 赵浩辰, 等. 碳达峰背景下中国电力行业碳排放因素和脱钩效应 [J]. 中国电力, 2024, 57(5): 88–98. DOI: 10.11930/j.issn.1004-9649.202306019.

    LI X D, TAN Q B, ZHAO H C, et al. Carbon emission factors and decoupling effects of China’s power industry under the background of carbon peak [J]. Electric Power, 2024, 57(5): 88–98. DOI: 10.11930/j.issn.1004-9649.202306019.
    [2] ZHAO F M, ROGERS W J, MANNAN M S. Experimental measurement and numerical analysis of binary hydrocarbon mixture flammability limits [J]. Process Safety and Environmental Protection, 2009, 87(2): 94–104. DOI: 10.1016/j.psep.2008.06.003.
    [3] 尹林虎, 任小荣, 马利云, 等. 乙炔生产工艺应用与推广 [J]. 江西化工, 2018(1): 39–41. DOI: 10.14127/j.cnki.jiangxihuagong.2018.01.014.

    YIN L H, REN X R, MA L Y, et al. Application and popularization acetylene production [J]. Jiangxi Chemical Industry, 2018(1): 39–41. DOI: 10.14127/j.cnki.jiangxihuagong.2018.01.014.
    [4] NGUYEN V G, DAGER B, CHHILLAR A, et al. Desirability-based optimization of dual-fuel diesel engine using acetylene as an alternative fuel [J]. Case Studies in Thermal Engineering, 2024, 59: 104488. DOI: 10.1016/j.csite.2024.104488.
    [5] LAWRENCE K R, ANCHUPOGU P, REDDYGARI M R, et al. Optimization of biodiesel yield and performance investigations on diesel engine powered with hydrogen and acetylene gas injected with enriched Jojoba biodiesel blend [J]. International Journal of Hydrogen Energy, 2024, 50: 502–523. DOI: 10.1016/j.ijhydene.2023.09.166.
    [6] HU X Z, YU Q B, SUN N, et al. Effects of high concentrations of CO2 on the lower flammability limits of oxy-methane mixtures [J]. Energy & Fuels, 2016, 30(5): 4346–4352. DOI: 10.1021/acs.energyfuels.6b00492.
    [7] HU X Z, YU Q B, SUN Y S. Effects of carbon dioxide on the upper flammability limits of methane in O2/CO2 atmosphere [J]. Energy, 2020, 208: 118417. DOI: 10.1016/j.energy.2020.118417.
    [8] SONG D E, HU X Z. Effects of CO2 on the flammability limits of ethane in O2/CO2 atmosphere [J]. Fuel, 2022, 324: 124543. DOI: 10.1016/j.fuel.2022.124543.
    [9] HU X Z, XIE Q H, YU Q B, et al. Effect of Carbon Dioxide on the lower flammability limit of propane in O2/CO2 atmosphere [J]. Energy & Fuels, 2020, 34(4): 4993–4998. DOI: 10.1021/acs.energyfuels.0c00601.
    [10] CHENG F M, LI B B, LUO Z M, et al. Effect of CO2 on the explosion limit parameters and kinetic characteristics of ammonia-hydrogen-air mixtures [J]. Journal of Loss Prevention in the Process Industries, 2024, 92: 105480. DOI: 10.1016/j.jlp.2024.105480.
    [11] TIAN Y, BAI M Q, LI Y X, et al. Effects of N2 and CO2 on the flammability of 2, 3, 3, 3-tetrafluoropropene at elevated temperatures [J]. Journal of Loss Prevention in the Process Industries, 2023, 83: 105024. DOI: 10.1016/j.jlp.2023.105024.
    [12] KIM T, BUKAR M, BASNET S, et al. Effects of O2 concentration of O2/CO2 co-flow on the flame stability of non-premixed coaxial jet flame [J]. Fuel, 2024, 371: 132114. DOI: 10.1016/j.fuel.2024.132114.
    [13] 陈肯, 张一泽, 孙肇林, 等. O2/CO2气氛下CH4/H2可燃下极限的实验研究 [J]. 冶金能源, 2019, 38(6): 31–36. DOI: 10.3969/j.issn.1001-1617.2019.06.008.

    CHEN K, ZHANG Y Z, SUN Z L, et al. Experimental study on the lower flammability limits of CH4/H2 in O2/CO2 atmosphere [J]. Metallurgical Energy, 2019, 38(6): 31–36. DOI: 10.3969/j.issn.1001-1617.2019.06.008.
    [14] KUMUK O. CO2, Ar, and He dilution effects on combustion dynamics and characteristics in a laboratory-scale combustor [J]. Fuel, 2024, 369: 131745. DOI: 10.1016/j.fuel.2024.131745.
    [15] BAZALAN B B. Effect pressure on the flammability limits of acetylene [D]. Pahang: Universiti Malaysia Pahang, 2012.
    [16] WANG H, YOU X Q, JOSHI A V, et al. High-temperature combustion reaction model of H2/CO/C1-C4 compounds [EB/OL]. [2024-09-23]. http://ignis.usc.edu/USC_Mech_II.htm.
    [17] XU K W, HE C L, YIN J Z, et al. Relevance of soot formation characteristics to equivalence ratio and CO2 addition of acetylene flame [J]. Powder Technology, 2022, 412: 117978. DOI: 10.1016/j.powtec.2022.117978.
    [18] SIST EN 1839: Determination of explosion limits of gases and vapours and determination of the limiting oxygen concentration (LOC) for flammable gases and vapours [S]. SIST, 2017.
    [19] ISO. ISO 6141: 2015 Gas analysis-contents of certificates for calibration gas mixtures [S]. Geneva: ISO, 2015.
    [20] PIO G, SALZANO E. Evaluation of safety parameters of light alkenes by means of detailed kinetic models [J]. Process Safety and Environmental Protection, 2018, 119: 131–137. DOI: 10.1016/j.psep.2018.07.024.
    [21] 梁容真. 单组分气体燃料在O2/CO2气氛下的可燃极限研究 [D]. 沈阳: 东北大学冶金学院, 2020. DOI: 10.27007/d.cnki.gdbeu.2020.002827.

    LIANG R Z. Study on the flammability limit of single-component gas fuel at O2/CO2 atmosphere [D]. Shenyang: School of Metallurgy, Northeastern University, 2020. DOI: 10.27007/d.cnki.gdbeu.2020.002827.
    [22] ZHANG Y, SHEN W F, ZHANG H, et al. Effects of inert dilution on the propagation and extinction of lean premixed syngas/air flames [J]. Fuel, 2015, 157: 115–121. DOI: 10.1016/j.fuel.2015.05.007.
    [23] HU E J, JIANG X, HUANG Z H, et al. Numerical study on the effects of diluents on the laminar burning velocity of methane-air mixtures [J]. Energy & Fuels, 2012, 26(7): 4242–4252. DOI: 10.1021/ef300535s.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  4
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-23
  • 修回日期:  2024-12-31
  • 网络出版日期:  2025-01-01

目录

    /

    返回文章
    返回