含碰撞缺陷的锂离子电池的电化学 性能衰退及安全性

高游 郑若昕 姜宇新 王璐冰

高游, 郑若昕, 姜宇新, 王璐冰. 含碰撞缺陷的锂离子电池的电化学 性能衰退及安全性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0368
引用本文: 高游, 郑若昕, 姜宇新, 王璐冰. 含碰撞缺陷的锂离子电池的电化学 性能衰退及安全性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0368
GAO You, ZHENG Ruoxin, JIANG Yuxin, WANG Lubing. Electrochemical performance degradation and safety of lithium-ion batteries containing defects induced by collision[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0368
Citation: GAO You, ZHENG Ruoxin, JIANG Yuxin, WANG Lubing. Electrochemical performance degradation and safety of lithium-ion batteries containing defects induced by collision[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0368

含碰撞缺陷的锂离子电池的电化学 性能衰退及安全性

doi: 10.11883/bzycj-2024-0368
基金项目: 国家自然科学基金(12472384)
详细信息
    作者简介:

    高 游(1997- ),男,硕士,2211090102@nbu.edu.cn

    通讯作者:

    王璐冰(1993- ),女,博士,副教授,wanglubing@nbu.edu.cn

  • 中图分类号: O347.3

Electrochemical performance degradation and safety of lithium-ion batteries containing defects induced by collision

  • 摘要: 不可避免的碰撞会导致电动汽车锂离子电池(lithium-ion battery,LIB)出现缺陷,为了确认碰撞后的缺陷电池能否继续使用,重点研究了缺陷电池的机械性能、电化学性能、安全边界及其衰退机理。首先,使用不同的压头通过准静态加载和落锤冲击制备了3种典型的缺陷电池,即压痕、50%偏置压缩和平板压缩缺陷电池。随后,分别通过准静态平板压缩和充电/放电循环评估其机械和电化学响应。结果发现,缺陷电池的机械性能显著下降,包括内部短路位移、短路载荷和能量吸收能力下降。相较于无缺陷电池,缺陷电池还表现出明显的电化学性能退化,包括更严重的容量衰退。此外,通过拆解电池解释了其降解机制,基于隔膜厚度提出电池的机械失效标准。最后,还讨论了加载速度和缺陷类型对缺陷电池性能的影响。加载速度越高,缺陷电池的性能退化越严重,这与惯性效应有关。不同类型的缺陷会导致隔膜厚度和石墨脱粘的变化,从而造成电池性能不同程度的退化。
  • 图  1  无缺陷锂离子电池的放充电电压和电流时间历程曲线

    Figure  1.  Variation of voltage and current of a non-defective lithium-ion battery with time during discharging and charging

    图  2  采用准静态压缩设备在锂离子电池样品上制造缺陷

    Figure  2.  Preparation of defects on lithium-ion batteries by using a quasi-static compression machine

    图  3  采用落锤测试设备在电池样品上制造压痕缺陷

    Figure  3.  Preparation of indentation defect on a lithium-ion battery by using a drop-weight test machine

    图  4  机械性能测试

    Figure  4.  Mechanical property test

    图  5  电化学性能测试

    Figure  5.  Electrochemical property test

    图  6  含不同深度压痕缺陷的锂离子电池的准静态平板压缩实验结果

    Figure  6.  Quasi-static plate compression experimental results of lithium-ion batteries containing different depth indentation defects prefabricated by quasi-static compression

    图  7  含不同深度压痕缺陷的锂离子电池的充放电循环实验结果

    Figure  7.  Charge-discharge cyclic experimental results of lithium-ion batteries with different depth indentation defects

    图  8  不同加载速度下预制了压痕缺陷的锂离子电池样品在准静态平压下的力-电-热耦合响应

    Figure  8.  Force-electric-thermal response of lithium-ion battery samples containing indentation defects pre-fabricated at different loading velocities under quasi-static flat compression

    图  9  在不同加载速度下预制了深度为3 mm的压痕缺陷的锂离子电池样品在准静态平压下的关键力学参数

    Figure  9.  Critical mechanical parameters of lithium-ion battery samples containing 3-mm-depth indentation defect pre-fabricated at different loading velocities under quasi-static flat compression

    图  10  5 mm缺陷深度下,不同缺陷类型电池样品在准静态平压下的力-电压-温度耦合响应

    Figure  10.  Force-electric-thermal response of lithium-ion battery samples containing different-type 5-mm-depth defects pre-fabricated at the loading velocity of 1 mm/min under quasi-static flat compression

    图  11  短路应变的定义

    Figure  11.  Definition of short circuit strain

    图  12  电池缺陷部分的隔膜厚度$ {\delta }_{\mathrm{m}} $和短路应变$ {\varepsilon }_{\mathrm{I}\mathrm{S}\mathrm{C}} $随缺陷类型的变化

    Figure  12.  Separator film thickness and short-circuit strain of the defective parts of the batteries vary with defect type

    图  13  含不同类型缺陷电池的循环实验结果

    Figure  13.  Cyclic experimental results of batteries containing different-type defects

  • [1] COMELLO S, GLENK G, REICHELSTEIN S. Transitioning to clean energy transportation services: life-cycle cost analysis for vehicle fleets [J]. Applied Energy, 2021, 285: 116408. DOI: 10.1016/j.apenergy.2020.116408.
    [2] MANIRATHINAM T, NARAYANAMOORTHY S, GEETHA S, et al. Assessing performance and satisfaction of micro-mobility in smart cities for sustainable clean energy transportation using novel APPRESAL method [J]. Journal of Cleaner Production, 2024, 436: 140372. DOI: 10.1016/j.jclepro.2023.140372.
    [3] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488(7411): 294–303. DOI: 10.1038/nature11475.
    [4] CHEN B, XIONG R, LI H L, et al. Pathways for sustainable energy transition [J]. Journal of Cleaner Production, 2019, 228: 1564–1571. DOI: 10.1016/j.jclepro.2019.04.372.
    [5] GANDOMAN F H, JAGUEMONT J, GOUTAM S, et al. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: basics, progress, and challenges [J]. Applied Energy, 2019, 251: 113343. DOI: 10.1016/j.apenergy.2019.113343.
    [6] TAO J J, WANG S L, CAO W, et al. A comprehensive review of state-of-charge and state-of-health estimation for lithium-ion battery energy storage systems [J]. Ionics, 2024, 30(10): 5903–5927. DOI: 10.1007/s11581-024-05686-z.
    [7] ZUBI G, DUFO-LÓPEZ R, CARVALHO M, et al. The lithium-ion battery: state of the art and future perspectives [J]. Renewable and Sustainable Energy Reviews, 2018, 89: 292–308. DOI: 10.1016/j.rser.2018.03.002.
    [8] DIOUF B, PODE R. Potential of lithium-ion batteries in renewable energy [J]. Renewable Energy, 2015, 76: 375–380. DOI: 10.1016/j.renene.2014.11.058.
    [9] LIU B H, JIA Y K, LI J, et al. Safety issues caused by internal short circuits in lithium-ion batteries [J]. Journal of Materials Chemistry A, 2018, 6(43): 21475–21484. DOI: 10.1039/C8TA08997C.
    [10] RUIZ V, PFRANG A, KRISTON A, et al. A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1427–1452. DOI: 10.1016/j.rser.2017.05.195.
    [11] SEVARIN A, FASCHING M, RAFFLER M, et al. Influence of cell selection and orientation within the traction battery on the crash safety of electric-powered two-wheelers [J]. Batteries, 2023, 9(4): 195. DOI: 10.3390/batteries9040195.
    [12] SUN P Y, BISSCHOP R, NIU H C, et al. A review of battery fires in electric vehicles [J]. Fire Technology, 2020, 56(4): 1361–1410. DOI: 10.1007/s10694-019-00944-3.
    [13] XING Y Y, LI Q M. Evaluation of the mechanical shock testing standards for electric vehicle batteries [J]. International Journal of Impact Engineering, 2024, 194: 105077. DOI: 10.1016/j.ijimpeng.2024.105077.
    [14] SHUAI W Q, LI E Y, WANG H. An equivalent circuit model of a deformed Li‐ion battery with parameter identification [J]. International Journal of Energy Research, 2020, 44(11): 8372–8387. DOI: 10.1002/er.5500.
    [15] WANG G W, WU J J, ZHENG Z J, et al. Effect of deformation on safety and capacity of Li-ion batteries [J]. Batteries, 2022, 8(11): 235. DOI: 10.3390/batteries8110235.
    [16] LIU J, MA Z C, GUO Z X, et al. Experimental investigation on mechanical-electrochemical coupling properties of cylindrical lithium-ion batteries [J]. Energy, 2024, 293: 130536. DOI: 10.1016/j.energy.2024.130536.
    [17] JIA Y K, LIU B H, HONG Z G, et al. Safety issues of defective lithium-ion batteries: identification and risk evaluation [J]. Journal of Materials Chemistry A, 2020, 8(25): 12472–12484. DOI: 10.1039/D0TA04171H.
    [18] CHEN X P, YUAN Q, WANG T, et al. Experimental study on the dynamic behavior of prismatic lithium-ion battery upon repeated impact [J]. Engineering Failure Analysis, 2020, 115: 104667. DOI: 10.1016/j.engfailanal.2020.104667.
    [19] 朱瑞卿, 胡玲玲, 周名哲. 锂电池多次冲击下的失效模式及损伤机制 [J]. 固体力学学报, 2023, 44(6): 795–804. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.032.

    ZHU R Q, HU L L, ZHOU M Z. Failure modes and damage mechanisms of lithium-ion batteries under repeated impacts [J]. Chinese Journal of Solid Mechanics, 2023, 44(6): 795–804. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.032.
    [20] 魏和光, 周名哲, 朱瑞卿, 等. 受冲击荷载后未失效电池力学性能和电性能的劣化 [J]. 爆炸与冲击, 2025, 45(2). DOI: 10.11883/bzycj-2024-0312.

    WEI H G, ZHOU M Z, ZHU R Q, et al. Mechanical and electrical degradation of impaired batteries after impact loading [J]. Explosion and Shock Waves, 2025, 45(2) . DOI: 10.11883/bzycj-2024-0312.
    [21] ZHOU D, LI H G, LI Z H, et al. Toward the performance evolution of lithium-ion battery upon impact loading [J]. Electrochimica Acta, 2022, 432: 141192. DOI: 10.1016/j.electacta.2022.141192.
    [22] 顾丽蓉, 王敬德, 张新春, 等. 挤压/冲击工况下圆柱形锂离子电池失效的影响因素分析 [J]. 高压物理学报, 2024, 38(4): 045301. DOI: 10.11858/gywlxb.20240708.

    GU L R, WANG J D, ZHANG X C, et al. Analysis of influencing factors of failure for cylindrical lithium-ion batteries under compression/impact conditions [J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 045301. DOI: 10.11858/gywlxb.20240708.
    [23] LIU B H, JIA Y K, YUAN C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review [J]. Energy Storage Materials, 2020, 24: 85–112. DOI: 10.1016/j.ensm.2019.06.036.
    [24] LI J N, LI W, SONG J Y, et al. Accurate measurement of the contact resistance during internal short circuit in lithium-ion batteries [J]. Journal of the Electrochemical Society, 2022, 169(2): 020505. DOI: 10.1149/1945-7111/ac4c79.
    [25] SANTHANAGOPALAN S, RAMADASS P, ZHANG J. Analysis of internal short-circuit in a lithium ion cell [J]. Journal of Power Sources, 2009, 194(1): 550–557. DOI: 10.1016/j.jpowsour.2009.05.002.
    [26] YUAN C H, WANG L B, YIN S, et al. Generalized separator failure criteria for internal short circuit of lithium-ion battery [J]. Journal of Power Sources, 2020, 467: 228360. DOI: 10.1016/j.jpowsour.2020.228360.
    [27] LIU J L, DUAN Q L, QI K Z, et al. Capacity fading mechanisms and state of health prediction of commercial lithium-ion battery in total lifespan [J]. Journal of Energy Storage, 2022, 46: 103910. DOI: 10.1016/j.est.2021.103910.
    [28] REDONDO-IGLESIAS E, VENET P, PELISSIER S. Modelling lithium-ion battery ageing in electric vehicle applications: calendar and cycling ageing combination effects [J]. Batteries, 2020, 6(1): 14. DOI: 10.3390/batteries6010014.
    [29] LIU Y J, XIA Y, XING B B, et al. Mechanical-electrical-thermal responses of lithium-ion pouch cells under dynamic loading: a comparative study between fresh cells and aged ones [J]. International Journal of Impact Engineering, 2022, 166: 104237. DOI: 10.1016/j.ijimpeng.2022.104237.
    [30] WANG L B, LI J P, CHEN J Y, et al. Revealing the internal short circuit mechanisms in lithium-ion batteries upon dynamic loading based on multiphysics simulation [J]. Applied Energy, 2023, 351: 121790. DOI: 10.1016/j.apenergy.2023.121790.
  • 加载中
图(13)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  9
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-30
  • 修回日期:  2025-01-14
  • 网络出版日期:  2024-12-25

目录

    /

    返回文章
    返回