Experimental study on the propagation of shock wave in the channel with flat wall
-
摘要: 为研究不同爆炸当量与不同装药位置下通道内冲击波的传播过程,建立了满足单兵人员通行的试验通道。通过试验对比了装药量与装药位置对超压时程曲线及冲击波参数分布的影响,开展了与试验工况相同的数值模拟,结合压力云图和超压时程曲线,发现波阵面运动是导致超压时程曲线演变和参数分布变化的主要原因。基于试验和数值模拟结果得到了具有实际工程参考意义的通道内冲击波超压预测模型。Abstract: To investigate the propagation process of shock waves within a channel under different explosive yields and charge positions, this study established an experimental channel designed for individual soldier transit. Through experiments and simulations, it is found that the quantity and position of the charge affect the time history of overpressure and shock wave parameters. Within the tunnel, the propagation velocity and overpressure peak of the shock wave decreased with increasing of distance, while the duration and impulse of positive overpressure continuously extend and increase. When the charge equivalent increases, all shock wave parameters are enhanced, though the influence on the rate of overpressure peak attenuation is minimal. As the distance between the explosion center and the interior of the tunnel increases, all parameters decline. Both experiments and simulations reveal a unique change in the time history of overpressure and shock wave parameters near the 9 m measurement point inside the tunnel. By analyzing pressure contour maps and overpressure time history, it is discovered that wavefront movement is the primary cause. Based on the fundamental shock wave theory, a higher overpressure peak of shock wave results in faster wavefront motion. Fro m the 3 m to 7 m section inside the entrance, the leading wavefront overpressure continuously attenuates with increasing distance, and its motion speed significantly decreases. However, the overpressure values of subsequent reflected waves attenuate more slowly or even exceed those of the leading wavefront due to continuous collision and superposition. Between the 7 m and 9 m sections inside the entrance, the reflected waves formed by later superposition catch up with and overlap the leading wavefront, resulting in an increase in the first peak value with increasing distance. This process is also clearly understood through the simulated overpressure contour map. Based on the experimental and numerical simulation results, a predictive model for shock wave overpressure within the channel, which has practical engineering reference significance, has been developed.
-
Key words:
- explosion shock wave /
- tunnel /
- shock wave propagation /
- attenuation mechanism
-
表 1 混凝土壁面通道中冲击波传播试验与模拟工况
Table 1. Experiment and simulation conditions of shock wave propagation in concrete channel
工况 装药量/kg 爆心高度/m 距入口距离/m Exp 1/Sim 1 0.5 1.2 0 Exp 2/Sim 2 1.0 1.2 1.0 Exp 3/Sim 3 1.0 1.2 0 Exp 4/Sim 4 1.0 1.2 -1.0 注:距离入口距离为正时代表在口外,为0时代表堵口,为负时代表在口内。 -
[1] 陈山. 俄罗斯真要买伊朗无人机? [N]. 环球时报, 2022-07-18(08). DOI: 10.28378/n.cnki.nhqsb.2022.006105. [2] 常河山. 乌克兰无人机群突袭俄八州, 打击俄油库及码头 [N]. 现代物流报, 2024-04-24(09). DOI: 10.28842/n.cnki.nwzxx.2024.000166. [3] 亨利奇. 爆炸动力学及其应用 [M]. 熊建国, 译. 北京: 科学出版社, 1987: 196–201. [4] 贝克. 空中爆炸 [M]. 江科, 译. 北京: 原子能出版社, 1982: 103–114. [5] 吴赛, 赵均海, 张冬芳, 等. 刚性地面对爆炸冲击波传播规律的影响 [J]. 工程爆破, 2020, 26(2): 1–8. DOI: 10.3969/j.issn.1006-7051.2020.02.001.WU S, ZHAO J H, ZHANG D F, et al. Influence of rigid ground on propagation characteristics of blast wave [J]. Engineering Blasting, 2020, 26(2): 1–8. DOI: 10.3969/j.issn.1006-7051.2020.02.001. [6] 姬建荣, 苏健军, 张玉磊, 等. 不同量级TNT爆炸冲击波正压时间的试验研究 [J]. 科学技术与工程, 2018, 18(5): 202–206. DOI: 10.3969/j.issn.1671-1815.2018.05.034.JI J R, SU J J, ZHANG Y L, et al. The experimental study on explosion positive pressure time of different orders of magnitude TNT [J]. Science Technology and Engineering, 2018, 18(5): 202–206. DOI: 10.3969/j.issn.1671-1815.2018.05.034. [7] 杨科之, 刘盛. 空气冲击波传播和衰减研究进展 [J]. 防护工程, 2020, 42(3): 1–10. DOI: 10.3969/j.issn.1674-1854.2020.03.001.YANG K Z, LIU S. Progress of research on propagation and attenuation of air blast [J]. Protective Engineering, 2020, 42(3): 1–10. DOI: 10.3969/j.issn.1674-1854.2020.03.001. [8] KINNEY G. Explosive shocks in air [M]. New York: MacMillan, London, 1962: 80–87. [9] BENSELAMA A M, WILLIAM-LOUIS M J P, MONNOYER F, et al. A numerical study of the evolution of the blast wave shape in tunnels [J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 609–616. [10] 胡涛, 蒋海燕, 吴国东, 等. 坑道内爆炸平面波形成位置的数值分析 [J]. 火炸药学报, 2023, 46(7): 632–638. DOI: 10.14077/j.issn.1007-7812.202211022.HU T, JIANG H Y, WU G D, et al. Numerical analysis of the formation position of the explosion plane wave in the tunnel [J]. Chinese Journal of Explosives & Propellants, 2023, 46(7): 632–638. DOI: 10.14077/j.issn.1007-7812.202211022. [11] 张玉磊, 王胜强, 袁建飞, 等. 方形坑道内爆炸冲击波传播规律 [J]. 含能材料, 2020, 28(1): 46–51. DOI: 10.11943/CJEM2018305.ZHANG Y L, WANG S Q, YUAN J F, et al. Experimental study on the propagation law of blast waves in a square tunnel [J]. Chinese Journal of Energetic Materials, 2020, 28(1): 46–51. DOI: 10.11943/CJEM2018305. [12] 卢红琴, 刘伟庆. 坑道截面形状对化爆冲击波传播规律的影响程度分析 [J]. 南京工业大学学报(自然科学版), 2009, 31(6): 41–44. DOI: 10.3969/j.issn.1671-7627.2009.06.009.LU H Q, LIU W Q. Influence of cross-section shape of tunnel on in-tunnel air blast wave propagation [J]. Journal of Nanjing University of Technology (Natural Science Edition), 2009, 31(6): 41–44. DOI: 10.3969/j.issn.1671-7627.2009.06.009. [13] 杨科之, 刘盛, 周布奎. 光滑坑道中基于波形参数的冲击波衰减规律 [J]. 防护工程, 2022, 44(4): 30–35. DOI: 10.3969/j.issn.1674-1854.2022.04.005.YANG K Z, LIU S, ZHOU B K. The law of shock wave attenuation based on waveform parameters in smooth tunnels [J]. Protective Engineering, 2022, 44(4): 30–35. DOI: 10.3969/j.issn.1674-1854.2022.04.005. [14] 李秀地, 耿振刚, 苗朝阳, 等. 温压炸药与TNT坑道内爆炸冲击波的对比研究 [J]. 防护工程, 2016, 38(5): 30–35.LI X D, GENG Z G, MIAO C Y, et al. Comparative study of blast wave of thermobaric explosive and TNT in tunnel [J]. Protective Engineering, 2016, 38(5): 30–35. [15] 杨秀敏. 爆炸冲击现象数值模拟 [M]. 合肥: 中国科学技术大学出版社, 2010: 92–113. [16] 刘盛, 杨科之, 章毅. 爆炸冲击波在满水管道中的传播规律 [J]. 防护工程, 2020, 42(2): 16–21. DOI: 10.3969/j.issn.1674-1854.2020.02.003.LIU S, YANG K Z, ZHANG Y. Wave propagation law of blast in water-filled pipelines [J]. Protective Engineering, 2020, 42(2): 16–21. DOI: 10.3969/j.issn.1674-1854.2020.02.003. [17] 孔霖, 苏健军, 李芝绒, 等. 不同装药坑道内爆炸冲击波传播规律的试验研究 [J]. 火工品, 2012(3): 21–24. DOI: 10.3969/j.issn.1003-1480.2012.03.006.KONG L, SU J J, LI Z R, et al. Test study on explosion shock wave propagation of different explosives inside tunnels [J]. Initiators & Pyrotechnics, 2012(3): 21–24. DOI: 10.3969/j.issn.1003-1480.2012.03.006. [18] 刘涛, 王海亮, 王有权, 等. 爆炸冲击波在不同断面竖井中的传播规律研究 [J]. 煤矿安全, 2019, 50(3): 212–216. DOI: 10.13347/j.cnki.mkaq.2019.03.052.LIU T, WANG H L, WANG Y Q, et al. Study on propagation law of blast wave in vertical shafts with different sections [J]. Safety in Coal Mines, 2019, 50(3): 212–216. DOI: 10.13347/j.cnki.mkaq.2019.03.052. [19] 柴永生, 王月桂, 章毅. 地铁口部爆炸冲击波传播规律与超压荷载研究 [J]. 防护工程, 2019, 41(1): 42–46.CHAI Y S, WANG Y G, ZHANG Y. Study on propagation of blast wave and the overpressure load subjected to metro entrance explosion [J]. Protective Engineering, 2019, 41(1): 42–46. [20] 庞伟宾, 何翔, 李茂生, 等. 空气冲击波在坑道内走时规律的实验研究 [J]. 爆炸与冲击, 2003, 23(6): 573–576. DOI: 10.3321/j.issn:1001-1455.2003.06.016.PANG W B, HE X, LI M S, et al. The formula for airblast time of arrival in tunnel [J]. Explosion and Shock Waves, 2003, 23(6): 573–576. DOI: 10.3321/j.issn:1001-1455.2003.06.016. [21] 杨科之, 袁正如. 冲击波在坑道直角转弯处的衰减规律 [J]. 防护工程, 2012, 34(3): 20–24.YANG K Z, YUAN Z R. Shock wave attenuation at the orthogonal turning point in tunnels [J]. Protective Engineering, 2012, 34(3): 20–24. [22] ОРЛЕНКО Л П. 爆炸物理学(上册) [M]. 孙承纬, 译. 北京: 科学出版社, 2011: 86–98. [23] 方秦, 柳锦春. 地下防护结构 [M]. 北京: 知识产权出版社, 2010: 68–69. [24] 李秀地, 孙建虎, 王起帆, 等. 高等防护工程 [M]. 北京: 国防工业出版社, 2016: 154-157. [25] 杨科之, 杨秀敏. 坑道内化爆冲击波的传播规律 [J]. 爆炸与冲击, 2003, 23(1): 37–40. DOI: 10.3321/j.issn:1001-1455.2003.01.007.YANG K Z, YANG X M. Shock waves propagation inside tunnels [J]. Explosion and Shock Waves, 2003, 23(1): 37–40. DOI: 10.3321/j.issn:1001-1455.2003.01.007. [26] 杨科之, 周布奎, 王安宝. 坑道中凹凸壁面对化爆冲击波的衰减作用 [J]. 防护工程, 2013, 35(4): 50–54.YANG K Z, ZHOU B K, WANG A B. Attenuation effects of the knaggy surface on explosion shock wave inside tunnels [J]. Protective Engineering, 2013, 35(4): 50–54. [27] 徐利娜, 雍顺宁, 王凤丹, 等. 直坑道内爆炸冲击波超压传播规律研究 [J]. 测试技术学报, 2014, 28(2): 114–118. DOI: 10.3969/j.issn.1671-7449.2014.02.005.XU L N, YONG S N, WANG F D, et al. Study of blast wave overpressure propagation inside straight tunnel [J]. Journal of Test and Measurement Technology, 2014, 28(2): 114–118. DOI: 10.3969/j.issn.1671-7449.2014.02.005. -