• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

爆破荷载作用下透明脆性材料的三维裂纹扩展行为

陶子豪 李祥龙 王建国 胡启文 左庭 胡涛

陶子豪, 李祥龙, 王建国, 胡启文, 左庭, 胡涛. 爆破荷载作用下透明脆性材料的三维裂纹扩展行为[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0385
引用本文: 陶子豪, 李祥龙, 王建国, 胡启文, 左庭, 胡涛. 爆破荷载作用下透明脆性材料的三维裂纹扩展行为[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0385
TAO Zihao, LI Xianglong, WNAG Jianguo, HU Qiwen, ZUO Ting, HU Tao. Three-dimensional crack propagation behaviors of transparent brittle materials under blasting load[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0385
Citation: TAO Zihao, LI Xianglong, WNAG Jianguo, HU Qiwen, ZUO Ting, HU Tao. Three-dimensional crack propagation behaviors of transparent brittle materials under blasting load[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0385

爆破荷载作用下透明脆性材料的三维裂纹扩展行为

doi: 10.11883/bzycj-2024-0385
基金项目: 国家自然科学基金(52274083);云南省重大科技专项(202202AG050014);云南省“兴滇英才支持计划”产业创新人才项目(KKXY202421005)
详细信息
    作者简介:

    陶子豪(1993- ),男,博士研究生,taozihao931108@163.com

    通讯作者:

    李祥龙(1980- ),男,博士,教授,lxl00014002@163.com

  • 中图分类号: O382.2; TJ301

Three-dimensional crack propagation behaviors of transparent brittle materials under blasting load

  • 摘要: 岩石等脆性材料在爆炸荷载作用下裂纹扩展行为通常难以捕捉。基于爆破损伤理论,利用有机玻璃(PMMA)脆性材料透明特性进行爆破模型试验,借助高速摄影技术和CT扫描系统深入探究爆破荷载作用下动态断裂行为和三维裂纹演化规律,结合三维扫描技术揭示裂纹三维形态和破裂面形貌特征。结果表明:在多段爆破能量持续作用下,脆性材料的裂纹存在多次激发扩展的情况;爆炸冲击波产生的初始裂纹数密度高,呈鱼鳞状形貌从“崎岖”向“微波”过渡,平整度提高。其中,裂纹面高程方差值随距离的增大从0.796降低至0.586;最大高度从3.2 m降低至2.8 mm,降低了12.5%。随着到爆炸中心距离的增大,介质由压剪破坏向张拉破坏转变,裂纹分布区分形维数和模型损伤度降低。
  • 图  1  爆炸过程及炮孔内不同位置的孔压

    Figure  1.  Detonation process and hole pressure at different positions in the hole

    图  2  PMMA爆破模型试验系统、模型尺寸及装药示意图

    Figure  2.  PMMA blasting test system and model, charge diagram

    图  3  PMMA爆破裂纹扩展演化过程

    Figure  3.  Crack growth process of PMMA during blasting

    图  4  掏槽爆破裂纹扩展形态

    Figure  4.  Crack growth patterns of cut blasting

    图  5  X射线源CT扫描系统

    Figure  5.  X-ray industrial CT detection system

    图  6  CT扫描和三维裂纹重建

    Figure  6.  CT scanning and 3D reconstruction of cracks

    图  7  裂纹面三维形貌色谱处理流程

    Figure  7.  3D morphology chromatographic processing flow of crack surface

    图  8  不同区域下断裂面的三维形貌色谱图

    Figure  8.  3D morphology chromatogram of the lower fracture surface in different regions

    图  9  断裂面点云数据最大高度和方差

    Figure  9.  Point cloud of maximum height and variance of fracture

    图  10  破裂面高度频率分布直方图和趋势

    Figure  10.  Histogram and trend of height-frequency distribution of fracture surface

    图  11  试件不同位置裂纹分布区分形维数拟合曲线

    Figure  11.  Fitting curves of fractal dimension of cracks at different positions of the specimen

    图  12  三维裂纹起裂力学模型

    Figure  12.  Schematic diagram of 3D crack initiation mechanical model

    图  13  裂纹扩展模式及裂纹特征

    Figure  13.  Crack propagation mode and crack characteristics

  • [1] 杨仁树, 丁晨曦, 王雁冰, 等. 爆炸应力波与爆生气体对被爆介质作用效应研究 [J]. 岩石力学与工程学报, 2016, 35(S2): 3501–3506. DOI: 10.13722/j.cnki.jrme.2016.0066.

    YANG R S, DING C X, WANG Y B, et al. Action-effect study of medium under loading of explosion stress wave and explosion gas [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3501–3506. DOI: 10.13722/j.cnki.jrme.2016.0066.
    [2] 杨仁树, 丁晨曦, 杨国梁, 等. 微差爆破的爆生裂纹扩展特性试验研究 [J]. 振动与冲击, 2017, 36(24): 97–102. DOI: 10.13465/j.cnki.jvs.2017.24.015.

    YANG R S, DING C X, YANG G L, et al. Tests for blasting induced crack propagation characteristics of short-delay blasting [J]. Journal of Vibration and Shock, 2017, 36(24): 97–102. DOI: 10.13465/j.cnki.jvs.2017.24.015.
    [3] 岳中文, 张士春, 邱鹏, 等. 切缝药包微差爆破爆生裂纹扩展机理 [J]. 煤炭学报, 2018, 43(3): 638–645. DOI: 10.13225/j.cnki.jccs.2017.0889.

    YUE Z W, ZHANG S C, QIU P, et al. Mechanism of explosive crack propagation with slotted cartridge millisecond blasting [J]. Journal of China Coal Society, 2018, 43(3): 638–645. DOI: 10.13225/j.cnki.jccs.2017.0889.
    [4] 李清, 徐文龙, 郭洋, 等. 柱状炮孔端部爆生裂纹动态扩展力学行为研究 [J]. 岩石力学与工程学报, 2019, 38(2): 267–275. DOI: 10.13722/j.cnki.jrme.2018.1096.

    LI Q, XU W L, GUO Y, et al. Study on mechanical behaviors of crack dynamic propagation at the end of cylinder blastholes [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 267–275. DOI: 10.13722/j.cnki.jrme.2018.1096.
    [5] 郭洋, 李清, 杨仁树, 等. 三维模型柱状药包爆生裂纹扩展规律研究 [J]. 振动与冲击, 2020, 39(10): 133–140,184. DOI: 10.13465/j.cnki.jvs.2020.10.018.

    GUO Y, LI Q, YANG R S, et al. Study on crack propagation law of cylindrical charges in three-dimensional models [J]. Journal of Vibration and Shock, 2020, 39(10): 133–140,184. DOI: 10.13465/j.cnki.jvs.2020.10.018.
    [6] 杨立云, 丁晨曦, 郑立双, 等. 初始静态压应力场中爆生裂纹的扩展行为 [J]. 岩土工程学报, 2018, 40(7): 1322–1327. DOI: 10.11779/CJGE201807020.

    YANG L Y, DING C X, ZHENG L S, et al. Evolution of blasting cracks in different static compression fields [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1322–1327. DOI: 10.11779/CJGE201807020.
    [7] 马泗洲, 刘科伟, 杨家彩, 等. 初始应力下岩体爆破损伤特性及破裂机理 [J]. 爆炸与冲击, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.

    MA S Z, LIU K W, YANG J C, et al. Blast-induced damage characteristics and fracture mechanism of rock mass under initial stress [J]. Explosion and Shock Waves, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.
    [8] 岳中文, 田世颖, 张士春, 等. 单向围压作用下切缝药包爆破爆生裂纹扩展规律的研究 [J]. 振动与冲击, 2019, 38(23): 186–195. DOI: 10.13465/j.cnki.jvs.2019.23.027.

    YUE Z W, TIAN S Y, ZHANG S C, et al. Expanding law of cracks formed by slotted cartridge blast under unidirectional confining pressure [J]. Journal of Vibration and Shock, 2019, 38(23): 186–195. DOI: 10.13465/j.cnki.jvs.2019.23.027.
    [9] 葛进进, 徐颖, 程琳, 等. 深部岩石爆破主裂纹扩展方向与地应力的关系 [J]. 振动与冲击, 2023, 42(4): 54–64. DOI: 10.13465/j.cnki.jvs.2023.04.007.

    GE J J, XU Y, CHENG L, et al. Relationship between in-situ stress and propagation direction of main cracks induced by blasting [J]. Journal of Vibration and Shock, 2023, 42(4): 54–64. DOI: 10.13465/j.cnki.jvs.2023.04.007.
    [10] 刘健, 刘泽功, 高魁, 等. 不同装药模式爆破载荷作用下煤层裂隙扩展特征试验研究 [J]. 岩石力学与工程学报, 2016, 35(4): 735–742. DOI: 10.13722/j.cnki.jrme.2015.0865.

    LIU J, LIU Z G, GAO K, et al. Experimental study of extension characters of cracks in coal seam under blasting load with different charging modes [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(4): 735–742. DOI: 10.13722/j.cnki.jrme.2015.0865.
    [11] 马军, 汪旭光, 李祥龙, 等. 不耦合装药刻痕爆破裂纹的动态力学特征及损伤分形规律实验 [J]. 兵工学报, 2023, 44(12): 3676–3686. DOI: 10.12382/bgxb.2022.1270.

    MA J, WANG X G, LI X L, et al. Experiment on dynamic mechanical characteristics and damage fractal law of crack in decoupled charge scratch blasting [J]. Acta Armamentarii, 2023, 44(12): 3676–3686. DOI: 10.12382/bgxb.2022.1270.
    [12] DAEHNKE A, ROSSMANITH H P, NAPIER J A L. Gas pressurisation of blast-induced conical cracks [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3/4/): 263.e1–263.17. DOI: 10.1016/S1365-1609(97)00282-7.
    [13] FORQUIN P, NASRAOUI M, RUSINEK A, et al. Experimental study of the confined behaviour of PMMA under quasi-static and dynamic loadings [J]. International Journal of Impact Engineering, 2012, 40/41: 46–57. DOI: 10.1016/j.ijimpeng.2011.09.007.
    [14] 沈世伟, 李国良, 李冬, 等. 不同角度预制裂隙条件下双孔爆破裂纹扩展规律 [J]. 煤炭学报, 2019, 44(10): 3049–3057. DOI: 10.13225/j.cnki.jccs.2018.1362.

    SHEN S W, LI G L, LI D, et al. Crack propagation law of two-hole blasting under different angles of prefabricated fissure [J]. Journal of China Coal Society, 2019, 44(10): 3049–3057. DOI: 10.13225/j.cnki.jccs.2018.1362.
    [15] 王雁冰, 商禹智, 石震鑫, 等. 定向断裂双孔爆破含缺陷介质裂纹扩展的动焦散试验 [J]. 爆破, 2018, 35(1): 15–20,48. DOI: 10.3963/j.issn.1001-487X.2018.01.003.

    WANG Y B, SHANG Y Z, SHI Z X, et al. Dynamic caustics experiment on crack propagation in defective medium by directional breaking with double hole blasting [J]. Blasting, 2018, 35(1): 15–20,48. DOI: 10.3963/j.issn.1001-487X.2018.01.003.
    [16] 王雁冰, 杨仁树, 丁晨曦, 等. 双孔爆炸应力波作用下缺陷介质裂纹扩展的动焦散试验 [J]. 煤炭学报, 2016, 41(7): 1755–1761. DOI: 10.13225/j.cnki.jccs.2015.0370.

    WANG Y B, YANG R S, DING C X, et al. Dynamic caustics experiment on crack propagation of defective medium under the effect of explosive stress waves of double holes [J]. Journal of China Coal Society, 2016, 41(7): 1755–1761. DOI: 10.13225/j.cnki.jccs.2015.0370.
    [17] 郭洋, 李清, 徐文龙, 等. 条形药包爆破预制贯通裂纹动态断裂过程研究 [J]. 岩土力学, 2018, 39(10): 3882–3890. DOI: 10.16285/j.rsm.2018.0219.

    GUO Y, LI Q, XU W L, et al. Dynamic fracture process of a pre-crack under linear charge explosion [J]. Rock and Soil Mechanics, 2018, 39(10): 3882–3890. DOI: 10.16285/j.rsm.2018.0219.
    [18] JEONG H, JEON B, CHOI S, et al. Fracturing behavior around a blasthole in a brittle material under blasting loading [J]. International Journal of Impact Engineering, 2020, 140: 103562. DOI: 10.1016/j.ijimpeng.2020.103562.
    [19] XIE L X, LU W B, ZHANG Q B, et al. Damage evolution mechanisms of rock in deep tunnels induced by cut blasting [J]. Tunnelling and Underground Space Technology, 2016, 58: 257–270. DOI: 10.1016/j.tust.2016.06.004.
    [20] PETROV Y V. Structural-temporal approach to modeling of fracture dynamics in brittle media [M]//ZHAO J, LI J C. Rock Dynamics and Applications-State of the Art. London: CRC Press, 2013: 101-110.
    [21] TAO J, YANG X G, LI H T, et al. Numerical investigation of blast-induced rock fragmentation [J]. Computers and Geotechnics, 2020, 128: 103846. DOI: 10.1016/j.compgeo.2020.103846.
    [22] BANADAKI M M D, MOHANTY B. Numerical simulation of stress wave induced fractures in rock [J]. International Journal of Impact Engineering, 2012, 40/41: 16-25. DOI: 10.1016/j.ijimpeng.2011.08.010.
    [23] CHEN B, SHEN B T, ZHANG S C, et al. 3D morphology and formation mechanism of fractures developed by true triaxial stress [J]. International Journal of Mining Science and Technology, 2022, 32(6): 1273–1284. DOI: 10.1016/j.ijmst.2022.09.002.
    [24] FENG X T, KONG R, ZHANG X W, et al. Experimental study of failure differences in hard rock under true triaxial compression [J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2109–2122. DOI: 10.1007/s00603-018-1700-1.
    [25] ZHU S, ZHENG J H, ZHU Z D, et al. Experiments on three-dimensional flaw dynamic evolution of transparent rock-like material under osmotic pressure [J]. Tunnelling and Underground Space Technology, 2022, 128: 104624. DOI: 10.1016/j.tust.2022.104624.
    [26] LIU Y, HUANG D, CEN D F, et al. Tensile strength and fracture surface morphology of granite under confined direct tension test [J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4755–4769. DOI: 10.1007/s00603-021-02543-7.
    [27] 左进京, 杨仁树, 龚敏, 等. 分段装药爆炸应变场与裂隙场分布规律 [J]. 爆炸与冲击, 2023, 43(3): 035101. DOI: 10.11883/bzycj-2022-0333.

    ZUO J J, YANG R S, GONG M, et al. On the distribution of explosion strain field and fracture field in segment charge [J]. Explosion and Shock Waves, 2023, 43(3): 035101. DOI: 10.11883/bzycj-2022-0333.
    [28] 周星源, 岳中文, 金庆雨, 等. 反射爆炸应力波作用下动静裂纹的贯通机理[J/OL]. 爆炸与冲击, 1–16. DOI: 10.11883/bzycj-2024-0409.

    ZHOU X, YUE Z, JIN Q, et al. Experimental study on the influence of the reflected explosiveStress waves on the dynamic crack propagation characteristics[J/OL]. Explosion and Shock Waves, 1–16. DOI: 10.11883/bzycj-2024-0409.
    [29] 王雁冰, 付代睿, 李杨, 等. 不同耦合介质爆破裂纹动态扩展特性研究 [J]. 力学与实践, 2023, 45(5): 1021–1032. DOI: 10.6052/1000-0879-23-327.

    WANG Y B, FU D R, LI Y, et al. Study on dynamic propagation characteristics of blasting cracks in different coupling media [J]. Mechanics in Engineering, 2023, 45(5): 1021–1032. DOI: 10.6052/1000-0879-23-327.
    [30] 李成孝, 张渊通, 安晨. 单侧开半圆孔PMMA试件Ⅰ型和Ⅰ-Ⅱ混合型裂纹动态扩展及数值模拟研究 [J]. 矿业科学学报, 2020, 5(5): 490–501. DOI: 10.19606/j.cnki.jmst.2020.05.003.

    LI C X, ZHANG Y T, AN C. Study on the dynamic propagation and numerical simulation of mode I and mixed mode I-II cracks in PMMA specimens with unilateral semicircular holes [J]. Journal of Mining Science and Technology, 2020, 5(5): 490–501. DOI: 10.19606/j.cnki.jmst.2020.05.003.
    [31] 孙强, 李雪东, 姚腾飞, 等. 基于DIC的爆炸加载下脆性材料裂纹扩展规律的试验研究 [J]. 爆炸与冲击, 2019, 39(10): 103102. DOI: 10.11883/bzycj-2018-0308.

    SUN Q, LI X D, YAO T F, et al. Experimental study on crack propagation of brittle materials based on DIC under explosive loading based on DIC [J]. Explosion and Shock Waves, 2019, 39(10): 103102. DOI: 10.11883/bzycj-2018-0308.
    [32] SCHÖLLMANN M, RICHARD H A, KULLMER G, et al. A new criterion for the prediction of crack development in multiaxially loaded structures [J]. International Journal of Fracture, 2002, 117(2): 129–141. DOI: 10.1023/A:1020980311611.
    [33] RICHARD H A, SCHRAMM B, SCHIRMEISEN N H. Cracks on Mixed Mode Loading - Theories, experiments, simulations [J]. International Journal of Fatigue, 2014, 62: 93–103. DOI: 10.1016/j.ijfatigue.2013.06.019.
    [34] WANG J, REN L, XIE L Z, et al. Maximum mean principal stress criterion for three-dimensional brittle fracture [J]. International Journal of Solids and Structures, 2016, 102/103: 142–154. DOI: 10.1016/j.ijsolstr.2016.10.009.
  • 加载中
图(13)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  17
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-11
  • 修回日期:  2025-04-27
  • 网络出版日期:  2025-05-15

目录

    /

    返回文章
    返回