• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

慢速和快速滑移下断层颗粒夹层的黏性特性

戚承志 吴思豫 班力壬 李晓照 KOCHARYANGevorg Grantovich

戚承志, 吴思豫, 班力壬, 李晓照, KOCHARYANGevorg Grantovich. 慢速和快速滑移下断层颗粒夹层的黏性特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0395
引用本文: 戚承志, 吴思豫, 班力壬, 李晓照, KOCHARYANGevorg Grantovich. 慢速和快速滑移下断层颗粒夹层的黏性特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0395
QI Chengzhi, WU Siyu, BAN Liren, LI Xiaozhao, KOCHARYAN Gevorg Grantovich. A study on the viscous characteristics of fault granular gouge under low and high slip rates[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0395
Citation: QI Chengzhi, WU Siyu, BAN Liren, LI Xiaozhao, KOCHARYAN Gevorg Grantovich. A study on the viscous characteristics of fault granular gouge under low and high slip rates[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0395

慢速和快速滑移下断层颗粒夹层的黏性特性

doi: 10.11883/bzycj-2024-0395
基金项目: 国家自然科学基金重点项目(52438007),面上项目(12172036);北京建筑大学头雁项目(X24029)
详细信息
    作者简介:

    戚承志(1965- ),男,博士,职称:教授,qichengzhi65@163.com

  • 中图分类号: O369

A study on the viscous characteristics of fault granular gouge under low and high slip rates

  • 摘要: 岩石断层颗粒夹层的粘性特性对于断层的动力学行为影响很大,但在不同滑移速度下断层颗粒夹层粘性系数的确定问题还没有得到解决。本文针对此问题进行了理论研究。首先,对于颗粒夹层的慢速剪切滑移,采用Maxwell松弛模型,得到了力链长度对于剪切应变率、剪切带的有效扩展速度、颗粒介质强度的依赖关系,进一步获得剪切带的松弛时间和颗粒介质的粘性系数表达式,建立了颗粒介质固-液力学行为转换的条件。与已有试验数据对比验证了本模型的正确性。对于高速的滑移剪切,颗粒介质运动具有湍流特征,应用统计物理学来描述岩石颗粒之间的相互作用,得到了粘性系数与剪切率成反比的结论。研究成果对于理解断层颗粒夹层的粘性等物理力学特性具有基础性意义。
  • 图  1  碳化硅、氧化铝强度随应变率变化情况[59]

    Figure  1.  The dependence of the strength of silicon carbide and aliminum oxide on strain rate[59]

  • [1] SADOVSKY M A, BOLKHOVITINOV L G, PISARENKO V F. Deformation of geophysical medium and seismic process[M]. Nauka, Moscow, 1987.
    [2] BRACE W F, BYERLEE J D. Stick-slip as a mechanism for earthquake [J]. Science, 1966, 153(3739): 990–992. DOI: 10.1126/science.153.3739.990.
    [3] KOSTROV BV. Mechanics of sources of tectonic earthquakes[M]. Nauka, Moscow, 1975.
    [4] KANAMORI H, STEWART G S. Mode of strain release along Gibbs fracture zone, Mid-Atlantic ridge [J]. Physics of the Earth and Planetary Interiors, 1976, 11(4): 312–332. DOI: 10.1016/0031-9201(76)90018-2.
    [5] AKI K, BOUCHON M, CHOUET B, et al. Quantitative prediction of strong motion for a potential earthquake fault [J]. Annals of Geophysics, 2010, 53(1): 81–91. DOI: 10.4401/ag-4665.
    [6] MYACHKIN V I. Preparation processes of earthquakes[M]. Nauka, Moscow, 1978.
    [7] DIETRICH J H. Modeling of rock friction: 1. experimental results and constitutive equations [J]. Journal of Geophysical Research., 1979, 84(B5): 2161–2168. DOI: 10.1029/JB084iB05p02161.
    [8] RICE J R, RUINA A L. Stability of steady frictional slipping [J]. Journal of Applied Mechanics, 1983, 50(2): 343–349. DOI: 10.1115/1.3167042.
    [9] SCHOLZ C H. The Mechanics of Earthquakes and Faulting[M]. Cambridge University Press, 1990.
    [10] DOBROVOLSKY I P. Theory of preparation of tectonic earthquakes[M]. Nauka, Moscow, 1991.
    [11] DOBROVOLSKY I P. The mathematical theory of earthquake preparation and prediction[M]. Fizmatlit, Moscow, 2009.
    [12] SOBOLEV G A, PONOMOREV A V. The Physics of Earthquakes and Precursors[M]. Nauka, Moscow, 2003.
    [13] KOCHARYAN G G. Geomechanics of faults[M]. Geos, Moscow, 2016.
    [14] SCHOLZ C H, CAMPOS J. The seismic coupling of subduction zones revisited [J]. Journal of Geophysical Research, 2012, 117(B5): 1–22. DOI: 10.1029/2011JB009003.
    [15] CARPENTER B M, IKARI M J, MARONE C. Laboratory observations of time-dependent frictional strengthening and stress relaxation in natural and synthetic fault gouges [J]. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 1183–1201. DOI: 10.1002/2015JB012136.
    [16] IKARI M J, MARONE C, SAFFER D M. On the relation between fault strength and frictional stability [J]. Geology, 2011, 39(1): 83–86. DOI: 10.1130/G31416.1.
    [17] BOATWRIGHT J, COCCO M. Frictional constraints on crustal faulting [J]. Journal of Geophysical Research, 1996, 101(B6): 13895–13909. DOI: 10.1029/96jb00405.
    [18] PERSSON B N J. Sliding Friction: Physical Principles and Applications[M]. Nano Science and Technology. Springer-Verlag, Berlin and Heidelberg, 1998.
    [19] MUSER MH, URBAKH M, ROBBINS MO. Statistical mechanics of static and low-velocity kinetic friction [J]. Advances in Chemical Physics., 2003, 126: 187–272.
    [20] BAUBERGER T, CAROLI C. Solid friction from stick-slip down to pinning and aging [J]. Advances in Physics., 2006, 55(3-4): 279–348. DOI: 10.1080/00018730600732186.
    [21] ZHENG G, RICE J R. Conditions under which velocity-weakening friction allows a self-healing versus a cracklike mode of rupture [J]. Bulletin of the Seismological Society of America, 1998, 88(6): 1466–1483. DOI: 10.1016/S0040-1951(98)00192-9.
    [22] RICE J R, LAPUSTA N, RANJITH K. Rate and state dependent friction and the stability of sliding between elastically deformable solids [J]. Journal of Mechanics and Physics of Solids, 2001, 49(9): 1865–1898. DOI: 10.1016/S0022-5096(01)00042-4.
    [23] DI TORO G, HIROSE T, NIELSEN S, et al. Natural and experimental evidence of melt lubrication of faults during earthquakes [J]. Science, 2006, 311(5761): 647–649. DOI: 10.1126/science.1121012.
    [24] DI TORO G, HAN R, HIROSE T, et al. Fault lubrication during earthquakes [J]. Nature, 2011, 471(7339): 494–8. DOI: 10.1038/nature09838.
    [25] GOLDSBY D L, TULLIS T E. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates [J]. Science, 2011, 334(6053): 216–218. DOI: 10.1126/science.1207902.
    [26] AHARONOV E, SCHOLZ C H. A physics‐based rock friction constitutive law: Steady state friction [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 1591–1614. DOI: 10.1002/2016JB013829.
    [27] SPAGNUOLO E, NIELSEN S, VIOLAY M, et al. An empirically based steady state friction law and implications for fault stability [J]. Geophysical Research Letters, 2016, 43(7): 3263–71. DOI: 10.1002/2016GL067881.
    [28] CHEN J Y, NIEMEIJER A R, SOIERS C J. Microphysical modeling of carbonate fault friction at slip rates spanning the full seismic cycle [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): e2020JB021024. DOI: 10.1029/2020JB021024.
    [29] SELVADURAI P, GLASER S. Asperity generation and its relationship to seismicity on a planar fault: A laboratory simulation [J]. Geophysical Journal International, 2017, 208(2): 1009–1025. DOI: 10.1093/gji/ggw439.
    [30] RECHES Z, ZU X, CARPENTWER B M. Energy-flux control of the steady-state, creep, and dynamic slip modes of faults [J]. Scientific Reports, 2019, 9(1): 10627. DOI: 10.1038/s41598-019-46922-1.
    [31] IKARI M J, MARONE C, SAFFER DM, et al. Slip weakening as a mechanism for slow earthquakes [J]. Nature Geosciences, 2013, 6(6): 468–472. DOI: 10.1038/NGEO18198.
    [32] CHEN X, MADDEN A S, BICKMORE B R, et al. Dynamic weakening by nanoscale smoothing during high-velocity fault slip [J]. Geology, 2013, 41(7): 739–7428. DOI: 10.1130/G34169.1.
    [33] BYERLEE J D. Friction of Rocks [J]. Pure and Applied Geophysics, 1978, 116(4-5): 615–626. DOI: 10.1007/BF00876528.
    [34] CHESTER J S, CHESTER F M, KRONENBERG A K. Fracture surface energy of the Punchbowl fault, San Andreas system [J]. Nature, 2005, 437(7055): 133–136. DOI: 10.1038/nature03942.
    [35] SIBSON R H. Thickness of the seismic slip zone[J], Bulletin of the Seismological Society of America. 2003, 93 (3): 1169-1178. DOI: 10.1785/0120020061.
    [36] MAJMUDAR T S, BEHINGGER R P. Contact force measurements and stress induced anisotropy in granular materials [J]. Nature, 2005, 435(7045): 1079–1082. DOI: 10.1038/nature03805.
    [37] ANTONY S J. Link between single-particle properties and macroscopic properties in particulate assemblies: role of structures within structures [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1861): 2879–2891. DOI: 10.1098/rsta.2007.0004.
    [38] RICHEFEU V, El YOUSSOUFI MS, AZEMA E, et al. Force transmission in dry and wet granular media [J]. Powder Technology., 2009, 190(1-2): 258–263. DOI: 10.1016/j.powtec.2008.04.069.
    [39] KOCHARYAN G G, NOVIKOV V A, OSTAPCHUK A A, et al. A study of different fault slip modes governed by the gouge material composition in laboratory experiments [J]. Geophysical Journal International., 2017, 208(1): 521–528. DOI: 10.1093/gji/ggw409.
    [40] BUDKOV A M, KOCHARYAN G G. Experimental study of different modes of block sliding along interface. Part 3. Numerical modeling [J]. Physical Mesomechanics, 2017, 20(2): 203–208. DOI: 10.1134/S1029959917020102.
    [41] OSTAPCHUK A A, MOROZOVA K G. On the Mechanism of Laboratory Earthquake Nucleation Highlighted by Acoustic Emission [J]. Scientific Reports., 2020, 10(1): 7245. DOI: 10.1038/s41598-020-64272-1.
    [42] OSTAPCHUK A A, MOROZOVA K G, MARKOV V, et al. Acoustic Emission Reveals Multiple Slip Modes on a Frictional Fault [J]. Frontiers of Earth Science, 2021, 9: 657487. DOI: 10.3389/feart.2021.657487.
    [43] LU K, BRODSY E E, KAVEHPOUR H P. Shear-weakening of the transitional regime for granular flow: the role of compressibility [J]. Journal of Fluid Mechanics, 2007, 587: 347–372. DOI: 10.1017/S0022112007007331.
    [44] CHEN J Y, NIEMEIJER A R, SPLERS C. Microphysical modeling of carbonate fault friction at slip rates spanning the full seismic cycle [J]. Journal of Geophysical Research: Solid Earth: JGR, 2021, 126(3): e2020JB021024. DOI: 10.1029/2020JB021024.
    [45] HAYWARD K S, HAWKINS R, COX S F, et al. Rheological controls on asperity weakening during earthquake slip [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(12): 12736–12762. DOI: 10.1029/2019JB018231.
    [46] POZZI G, PAOLA N, NIELSEN S, et al. Coseismic fault lubrication by viscous deformation [J]. Nature Geoscience., 2021, 14(6): 437–442. DOI: 10.1038/s41561-021-00747-8.
    [47] FAGERENG A, BEALL A. Is complex fault zone behaviour a reflection of rheological heterogeneity? [J]. Philosophical Transactions of the Royal Society A, 2021, 379(2193): 20190421. DOI: 10.1098/rsta.2019.0421.
    [48] RADIONOV V N, SIZOV I A, TSVETKOV V M. Fundamental of geomechanics[M], Nedra, Moscow, 1986.
    [49] TURUNTAEV S B, KULIJKIN A M, GERASOMOVZ T I, et al. Dynamics of localization shear deformation in sand [J]. Doklady Akademii Nauk (Reports of Russian Academy of Science), 1997, 354(1): 105–108.
    [50] LANDAU L D, LIFSHITZ E M. Theory of elasticity[M]. Pergamon, New York, 1959.
    [51] ALONSO-MARROQUIN F, VARDOULAKIS I. Micromechanics of shear bands in granular media[C]//Powders and Grains 2005 - Proceedings of the 5th International Conference on Micromechanics of Granular Media (2005), The Netherlands: A. A. Balkema, Leiden, 2005: 701–704.
    [52] ABEDI S, RECHENMACHER A L, ORLANDO A D. Vortex formation and dissolution in sheared sand [J]. Granular Matter, 2012, 14(6): 695–705. DOI: 10.1007/s10035-012-0369-5.
    [53] KIM V A, KARIMOV S A. Manifestation of physical mesomechanics at contact interaction [J]. Journal of state technical university of komsomolsky at Amur, Science on nature and technique, 2014, II-1(18): 79–85.
    [54] BIRD R B, ARMSTRONG R C, HASSAGER O. Dynamics of polymeric liquid, vol. 2, 2-nd ed[M]. Wiley, New York, 1987.
    [55] CHOW T S. Mesoscopic physics of complex materials[M]. Springer, New York, 2000.
    [56] SIMMONS J H, Mohr R K, and Montrose C J. Non-Newtonian Viscous Flow in Glass[J]. Journal of Applied Physics, 53 (6)1982: 4075–4080. DOI: 10.1063/1.331272.
    [57] SIMMONS J H, OCHOA R, SIMMONS K D, et al. Non-Newtonian viscous flow in soda-lime-silica glass at forming and annealing temperatures[J]. Journal of Non-Crystalline Solids, 105(3), 1988: 313–322. DOI: 10.1016/0022-3093(88)90325-0.
    [58] SIMMONS J H. What is so exciting about non-linear viscous flow in glass, molecular dynamics simulations of brittle fracture and semiconductor-glass quantum composites[J]. Journal of Non-Crystalline Solids, 239, 1988: 1–15. DOI: 10.1016/S0022-3093(98)00741-8.
    [59] GRADY DE, Shock wave properties of brittle solids[C]//In AIP: Shock Compression of Condensed Matters, Steve Schmidt (ed. ), New York: AIP Press, 1995, 9–20.
  • 加载中
图(1)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  8
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-18
  • 修回日期:  2025-01-08
  • 网络出版日期:  2025-01-08

目录

    /

    返回文章
    返回