• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

深部岩体结构面动力特性与致灾效应研究进展

单仁亮 柏皓博 孙鹏 李泳臻 吴浩田 肖圣超 窦浩宇

单仁亮, 柏皓博, 孙鹏, 李泳臻, 吴浩田, 肖圣超, 窦浩宇. 深部岩体结构面动力特性与致灾效应研究进展[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0399
引用本文: 单仁亮, 柏皓博, 孙鹏, 李泳臻, 吴浩田, 肖圣超, 窦浩宇. 深部岩体结构面动力特性与致灾效应研究进展[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0399
SHAN Renliang, BAI Haobo, SUN Peng, LI Yongzhen, WU Haotian, XIAO Shengchao, DOU Haoyu. Research progress on the dynamic characteristics of structural planes in deep rock mass and associated disaster-inducing effects[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0399
Citation: SHAN Renliang, BAI Haobo, SUN Peng, LI Yongzhen, WU Haotian, XIAO Shengchao, DOU Haoyu. Research progress on the dynamic characteristics of structural planes in deep rock mass and associated disaster-inducing effects[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0399

深部岩体结构面动力特性与致灾效应研究进展

doi: 10.11883/bzycj-2024-0399
基金项目: 国家自然科学基金(52274148)
详细信息
    作者简介:

    单仁亮(1964- ),男,博士,教授,博士生导师,srl@cumtb.edu.cn

    通讯作者:

    柏皓博(1996-  ),男,博士研究生,915624065@qq.com

  • 中图分类号: P

Research progress on the dynamic characteristics of structural planes in deep rock mass and associated disaster-inducing effects

  • 摘要: 随着全球资源需求的持续上升,深部地下工程的开发规模不断扩大,面临日益复杂的地质条件和高地应力环境。这种转变使得深部含结构面岩体的动力特性研究成为近年来的热点与难点问题。因此,对结构面的动剪切和动拉压特性进行了系统总结,并深入分析了多种因素对结构面动力行为的影响。此外,探讨了结构面效应对岩体动力特性的影响,特别是对岩体动强度和动变形的作用。针对常见的深部动力灾害,如岩爆、大变形和冲击地压,梳理了其触发机制与防治技术,强调了建立有效理论和技术体系的重要性。最后,对未来深部岩体结构面动力特性及动力灾害防控技术的研究方向进行了展望,呼吁结合新兴技术与理论方法,以提升研究的深度与广度,从而推动工程实践中的安全性和有效性。
  • 图  1  应力阶跃实验结果[11]

    Figure  1.  Results of stress step test[11]

    图  2  结构面角度与起伏角

    Figure  2.  Angle and relief angle of structural plane

    图  3  剪切应力-剪切位移曲线[13]

    Figure  3.  Shear stress vs. shear displacement curves[13]

    图  4  动态本构力学模型[16]

    Figure  4.  Dynamic constitutive mechanical model[16]

    图  5  试验结果[17]

    Figure  5.  Test results[17]

    图  6  黏弹性模型

    Figure  6.  Viscoelastic model

    图  7  岩石结构面冲击剪切实验装置[27]

    Figure  7.  Experimental apparatus used in the impact shear tests of rock discontinuity[27]

    图  8  不同应力路径下剪切应力-位移曲线[30]

    Figure  8.  Shear stress-displacement curves under different stress paths[30]

    图  9  大理岩能耗维数的关系曲线[34]

    Figure  9.  Relation curve between energy dissipation and dimension in Marble[34]

    图  10  水平位移时程曲线[39]

    Figure  10.  Time history of horizontal displacement[39]

    图  11  多功能真三轴流固耦合试验系统[50]

    Figure  11.  Multifunctional true triaxial fluid-solid coupling test system[50]

    图  12  深部岩体动静组合加载问题研究思路[53]

    Figure  12.  Research approach for dynamic-static combined loading issues in deep rock mass[53]

    图  13  块系岩体动态力学性能测试试验系统[54]

    Figure  13.  Test system for dynamic mechanical properties of block rock mass[54]

    图  14  裂隙试样几何结构示意图[56]

    Figure  14.  Schematic diagram of the geometric configurations of the fissured specimen[56]

    图  15  不同参数下结构面的滑移条件[63]

    Figure  15.  Slip conditions of structural plane under different parameters[63]

    图  16  NPR锚杆结构原理[69]

    Figure  16.  Principle of NPR anchor structure [69]

    图  17  管索组合结构示意图[72]

    Figure  17.  Schematic illustration of the anchor cable with C-shaped tube[72]

    图  18  不同煤柱宽度下的垂直应力[78]

    Figure  18.  Vertical stress under different pillar widths[78]

    表  1  黏滑效应影响因素[10,12]

    Table  1.   Influencing factors of stick-slip effect[10,12]

    影响因素影响机理
    法向应力较高的法向应力往往会增加摩擦阻力,从而延缓滑移的发生
    接触面粗糙度高粗糙度表面更容易触发黏滑效应
    加载速率较高的加载速率可能使滑移阶段更具破坏性
    材料属性材料的黏弹性、塑性等特性影响黏滑效应的发生频率和强度
    下载: 导出CSV

    表  2  动态加载模式与破坏模式

    Table  2.   Dynamic loading mode and destruction mode

    加载模式破坏模式
    加载路径单向加载滑移破坏,可能伴随局部破裂,导致岩体沿滑动方向错位
    多向加载在多向加载下,破坏模式包括剪切滑移、裂隙扩展和张拉破裂等。局部破裂与滑移相结合,破坏形式更加复杂
    循环加载随着循环次数的增加,滑移幅度逐渐增大,裂隙扩展贯通。局部应力集中区域易发生疲劳破坏,导致局部或整体失稳
    加载频率低频滑移行为明显,破坏模式主要为沿着弱面发生剪切滑移
    高频局部应力集中加剧,滑移伴随裂隙扩展,最终可能导致大规模的结构面失稳
    加载幅度小幅度局部滑移和微裂纹扩展,但整体保持相对稳定,破坏较为分散且不剧烈
    大幅度滑移与局部破裂剧烈发生,最终导致整体失稳或坍塌
    加载速率低速率滑移行为较为温和,局部破裂扩展缓慢,整体破坏模式较为可预测
    高速率破坏过程迅速,滑移和裂隙扩展同时发生,甚至可能形成贯通性裂隙,导致整体坍塌或大规模失稳
    下载: 导出CSV
  • [1] 陈毅. 深埋硬岩隧道结构面对岩爆破坏特征的影响研究 [J]. 水电能源科学, 2024, 42(7): 105–108,72. DOI: 10.20040/j.cnki.1000-7709.2024.20231195.

    CHEN Y. Research on the influence of structural plane of deep buried hard rock tunnel on rockburst failure characteristics [J]. Water Resources and Power, 2024, 42(7): 105–108,72. DOI: 10.20040/j.cnki.1000-7709.2024.20231195.
    [2] 李育宗, 袁亮, 张庆贺, 等. 含结构面岩体岩爆特征真三轴试验研究 [J]. 岩石力学与工程学报, 2024, 43(1): 120–132. DOI: 10.13722/j.cnki.jrme.2023.0133.

    LI Y Z, YUAN L, ZHANG Q H, et al. True-triaxial experimental study on the rockburst characteristics of rock mass with a structural plane [J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(1): 120–132. DOI: 10.13722/j.cnki.jrme.2023.0133.
    [3] 朱金养, 郭浩森, 罗文俊. 深埋硬岩隧洞岩爆风险与结构面倾角关系探讨 [J]. 防灾减灾工程学报, 2023, 43(1): 60–69. DOI: 10.13409/j.cnki.jdpme.20201208003.

    ZHU J Y, GUO H S, LUO W J. Discussion on relationship between rockburst risk and structural plane inclination of deep hard rock tunnel [J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43(1): 60–69. DOI: 10.13409/j.cnki.jdpme.20201208003.
    [4] 周子龙, 卢双全, 唐雯钰. 不同剪切速率下软弱结构面抗剪特性分析 [J]. 有色金属工程, 2019, 9(4): 79–85. DOI: 10.3969/j.issn.2095-1744.2019.04.013.

    ZHOU Z L, LU S Q, TANG W Y. Analysis of shear properties of soft structure plane with different shear rates [J]. Nonferrous Metals Engineering, 2019, 9(4): 79–85. DOI: 10.3969/j.issn.2095-1744.2019.04.013.
    [5] SHU P Y, LI H H, WANG T T, et al. Dynamic strength of rock with single planar joint under various loading rates at various angles of loads applied [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(3): 545–554. DOI: 10.1016/j.jrmge.2018.01.005.
    [6] ZHANG X B, YI B, JIANG Q H, et al. Evaluation models for the peak shear-strength and shear-resistance components of rough rock joints [J]. Journal of Testing and Evaluation, 2017, 45(6): 2128–2138. DOI: 10.1520/JTE20170134.
    [7] ZOU J P, HU X Y, JIAO Y Y, et al. Dynamic mechanical behaviors of rock's joints quantified by repeated impact loading experiments with digital imagery [J]. Rock Mechanics and Rock Engineering, 2022, 55(11): 7035–7048. DOI: 10.1007/s00603-022-03004-5.
    [8] 张磊, 王文帅, 苗春贺, 等. 花岗岩粗糙表面动摩擦形态演化 [J]. 高压物理学报, 2021, 35(3): 031201. DOI: 10.11858/gywlxb.20200640.

    ZHANG L, WANG W S, MIAO C H, et al. Rough surface morphology of granite subjected to dynamic friction [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 031201. DOI: 10.11858/gywlxb.20200640.
    [9] 程正坤, 廖日东, 李玉婷, 等. 表面形貌对应力集中系数的影响研究 [J]. 北京理工大学学报, 2016, 36(3): 231–236. DOI: 10.15918/j.tbit1001-0645.2016.03.003.

    CHENG Z K, LIAO R D, LI Y T, et al. Effect of surface topography on stress concentration factor [J]. Transactions of Beijing Institute of Technology, 2016, 36(3): 231–236. DOI: 10.15918/j.tbit1001-0645.2016.03.003.
    [10] ZHANG Q X, MO J L, XIANG Z Y, et al. The influence of interfacial wear characteristics on stick-slip vibration [J]. Tribology International, 2023, 185: 108535. DOI: 10.1016/j.triboint.2023.108535.
    [11] 崔国建, 张传庆, 周辉, 等. 动力扰动作用下多功能岩石结构面剪切试验装置研制与应用研究 [J]. 岩土力学, 2022, 43(6): 1727–1737. DOI: 10.16285/j.rsm.2021.1592.

    CUI G J, ZHANG C Q, ZHOU H, et al. Development and application of multifunctional shear test apparatus for rock discontinuity under dynamic disturbance loading [J]. Rock and Soil Mechanics, 2022, 43(6): 1727–1737. DOI: 10.16285/j.rsm.2021.1592.
    [12] 宋保江, 阎绍泽. 界面黏滑摩擦现象的研究进展 [J]. 中国机械工程, 2017, 28(13): 1513–1522. DOI: 10.3969/j.issn.1004-132X.2017.13.001.

    SONG B J, YAN S Z. Research progresses on interfacial stick-slip frictions [J]. China Mechanical Engineering, 2017, 28(13): 1513–1522. DOI: 10.3969/j.issn.1004-132X.2017.13.001.
    [13] 焦峰, 许江, 彭守建, 等. 常法向刚度条件下人工结构面剪切力学特性及损伤演化规律试验研究 [J]. 煤炭学报, 2023, 48(11): 4065–4077. DOI: 10.13225/j.cnki.jccs.2022.1819.

    JIAO F, XU J, PENG S J, et al. Experimental study on shear mechanical properties and damage evolution of artificial structural plane under constant normal stiffness [J]. Journal of China Coal Society, 2023, 48(11): 4065–4077. DOI: 10.13225/j.cnki.jccs.2022.1819.
    [14] 刘峰. 动力扰动下岩体结构面力学特性及在露井联采工程中应用研究 [D]. 阜新: 辽宁工程技术大学, 2019. DOI: 10.27210/d.cnki.glnju.2019.000529.

    LIU F. Mechanical characteristics of rock mass discontinuities under dynamic disturbance and application in open-underground combined mining [D]. Fuxin: Liaoning Technical University, 2019. DOI: 10.27210/d.cnki.glnju.2019.000529.
    [15] 孙广忠. 岩体结构力学 [M]. 北京: 科学出版社, 1988: 124–127.

    SUN G Z. Structural mechanics of rock mass [M]. Beijing: Science Press, 1988: 124–127. (查阅网上资料, 未找到本条文献英文翻译, 请确认).
    [16] 刘红岩, 吕淑然, 张力民. 基于组合模型法的贯通节理岩体动态损伤本构模型 [J]. 岩土工程学报, 2014, 36(10): 1814–1821. DOI: 10.11779/CJGE201410008.

    LIU H Y, LV S R, ZHANG L M. Dynamic damage constitutive model for persistent jointed rock mass based on combination model method [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1814–1821. DOI: 10.11779/CJGE201410008.
    [17] 李夕兵, 王卫华, 马春德. 不同频率载荷作用下的岩石节理本构模型 [J]. 岩石力学与工程学报, 2007, 26(2): 247–253. DOI: 10.3321/j.issn:1000-6915.2007.02.004.

    LI X B, WANG W H, MA C D. Constitutive model of rock joints under compression loads with different frequencies [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2): 247–253. DOI: 10.3321/j.issn:1000-6915.2007.02.004.
    [18] 邓建, 肖明, 谢冰冰, 等. 循环荷载下岩体结构面本构关系与积分算法研究 [J]. 岩土工程学报, 2017, 39(6): 1048–1057. DOI: 10.11779/CJGE201706010.

    DENG J, XIAO M, XIE B B, et al. Constitutive relation and integration algorithm for rock discontinuities under cyclic loading [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1048–1057. DOI: 10.11779/CJGE201706010.
    [19] 夏才初, 金磊, 郭锐. 参数非线性理论流变力学模型研究进展及存在的问题 [J]. 岩石力学与工程学报, 2011, 30(3): 454–463.

    XIA C C, JIN L, GUO R. Nonlinear theoretical rheological model for rock: a review and some problems [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(3): 454–463.
    [20] 虎积元, 盛冬发, 陈泰聪, 等. 岩石三维非线性黏弹塑性损伤蠕变模型研究 [J]. 河北工程大学学报(自然科学版), 2024, 41(2): 36–42. DOI: 10.3969/j.issn.1673-9469.2024.02.006.

    HU J Y, SHENG D F, CHEN T C, et al. Study on 3D nonlinear viscoelastic-plastic damage creep model of rock [J]. Journal of Hebei University of Engineering (Natural Science Edition), 2024, 41(2): 36–42. DOI: 10.3969/j.issn.1673-9469.2024.02.006.
    [21] 钱帅帅. 基于速率-状态依赖摩擦定律的断层亚失稳过程的连续-非连续方法模拟 [D]. 阜新: 辽宁工程技术大学, 2021. DOI: 10.27210/d.cnki.glnju.2021.000146.

    QIAN S S. Numerical simulation of the meta-instability stage of the fault based on the rate and state dependent friction law by use of the continuum-discontinuum method [D]. Fuxin: Liaoning Technical University, 2021. DOI: 10.27210/d.cnki.glnju.2021.000146.
    [22] 侯红娟, 许强, 吴金辉. 岩质斜坡动力响应特性的结构面效应研究 [J]. 世界地震工程, 2015, 31(1): 224–231.

    HOU H J, XU Q, WU J H. Research on structural plane effect of rock mass slope's dynamic response characteristics [J]. World Earthquake Engineering, 2015, 31(1): 224–231.
    [23] 郎颖娴, 梁正召, 钱希坤, 等. 岩体结构面对应力波传播及动态破坏影响研究 [J]. 地下空间与工程学报, 2023, 19(6): 1896–1906.

    LANG Y X, LIANG Z Z, QIAN X K, et al. A study on the effect of rock discontinuities on stress wave propagation and dynamic fracture [J]. Chinese Journal of Underground Space and Engineering, 2023, 19(6): 1896–1906.
    [24] 丁黄平. 节理裂隙岩体隧道爆破成型效果研究 [D]. 长春: 吉林大学, 2009.

    DING H P. Study on the shaping effect of jointed rock mass under blasting in tunnel [D]. Changchun: Jilin University, 2009.
    [25] 窦林名, 何江, 曹安业, 等. 动载诱发冲击机理及其控制对策探讨 [C]//中国煤炭学会成立五十周年高层学术论坛论文集. 北京: 中国煤炭学会, 2012: 294–299.

    DOU L M, HE J, CAO A Y, et al. Mechanism and prevention methods discussion on coal mine rock burst induced by dynamic load [C]//Proceedings of the High-Level Academic Forum for the 50th Anniversary of the Chinese Society for Coal. Beijing: Chinese Society for Coal, 2012: 294–299.
    [26] MENG F Z, WONG L N Y, ZHOU H, et al. Shear rate effects on the post-peak shear behaviour and acoustic emission characteristics of artificially split granite joints [J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2155–2174. DOI: 10.1007/s00603-018-1722-8.
    [27] WANG F L, WU B B, WANG S H, et al. Shear response of rough rock discontinuities subjected to impact loading: experimental study and theoretical modelling [J]. Lithosphere, 2022, 2022(S11): 1192067. DOI: 10.2113/2022/1192067.
    [28] JAFARI M K, HOSSEINI K A, PELLET F, et al. Evaluation of shear strength of rock joints subjected to cyclic loading [J]. Soil Dynamics and Earthquake Engineering, 2003, 23(7): 619–630. DOI: 10.1016/S0267-7261(03)00063-0.
    [29] ZHOU X P, HE Y, SHOU Y D. Experimental investigation of the effects of loading rate, contact roughness, and normal stress on the stick-slip behavior of faults [J]. Tectonophysics, 2021, 816: 229027 . DOI: 10.1016/j.tecto.2021.229027.
    [30] 王斐笠, 郑鸿康, 王述红, 等. 不同剪切历史下结构面的剪切特性和滑移特征[J/OL]. 金属矿山, 1–12(2024-04-09)[2024-10-10]. http://kns.cnki.net/kcms/detail/34.1055.TD.20240408.0959.002.html.

    WANG F L, ZHENG H K, WANG S H, et al. Shear behaviors and slip characteristics of rock fractures under different shear histories[J/OL]. Metal Mine, 1–12(2024-04-09)[2024-10-10]. http://kns.cnki.net/kcms/detail/34.1055.TD.20240408.0959.002.html.
    [31] ZHOU T, HAN Z Y, LI D Y, et al. Experimental study of the mechanical and fracture behavior of flawed sandstone subjected to coupled static-repetitive impact loading [J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103161. DOI: 10.1016/j.tafmec.2021.103161.
    [32] XIAO P, LI D Y, ZHAO G Y, et al. Mechanical properties and failure behavior of rock with different flaw inclinations under coupled static and dynamic loads [J]. Journal of Central South University, 2020, 27(10): 2945–2958. DOI: 10.1007/s11771-020-4520-x.
    [33] QIU J D, LI D Y, LI X B, et al. Dynamic fracturing behavior of layered rock with different inclination angles in SHPB tests [J]. Shock and Vibration, 2017, 2017: 7687802.
    [34] 李业学, 刘建锋, 秦丽. 应力波穿越岩石节理时能量耗散规律的实验研究 [J]. 实验力学, 2011, 26(1): 85–90.

    LI Y X, LIU J F, QIN L. Experimental study on rule of energy dissipation of stress wave across rock joint [J]. Journal of Experimental Mechanics, 2011, 26(1): 85–90.
    [35] 唐红梅, 陈涛, 鲜学福. 岩体结构面蠕变损伤机理研究 [J]. 工程地质学报, 2009, 17(3): 357–362. DOI: 10.3969/j.issn.1004-9665.2009.03.012.

    TANG H M, CHEN T, XIAN X F. Mechanism of creep damage on structure plane in rock mass [J]. Journal of Engineering Geology, 2009, 17(3): 357–362. DOI: 10.3969/j.issn.1004-9665.2009.03.012.
    [36] 张为芳. 含倾斜软弱结构面砂岩流变特性研究[D]. 湘潭: 湖南科技大学, 2018. DOI: 10.27738/d.cnki.ghnkd.2018.000175.

    ZHANG W F. Study on the rheological properties of sandstone with slanted weak structural surface [D]. Xiangtan: Hunan University of Science and Technology, 2018. DOI: 10.27738/d.cnki.ghnkd.2018.000175.
    [37] 张占荣. 裂隙岩体变形特性研究 [D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2010.

    ZHANG Z R. Study on deformation properties of fractured rock mass [D]. Wuhan: Institute of Rock and Soil Mechanics Chinese Academy of Sciences, 2010.
    [38] WANG F L, XIA K W, YAO W, et al. Slip behavior of rough rock discontinuity under high velocity impact: experiments and models [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 144: 104831. DOI: 10.1016/j.ijrmms.2021.104831.
    [39] 邓树新, 王明洋, 李杰, 等. 冲击扰动下滑移型岩爆的模拟试验及机理探讨 [J]. 岩土工程学报, 2020, 42(12): 2215–2221. DOI: 10.11779/CJGE202012007.

    DENG S X, WANG M Y, LI J, et al. Mechanism and simulation experiment of slip-type rock bursts triggered by impact disturbances [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2215–2221. DOI: 10.11779/CJGE202012007.
    [40] 申辉, 刘亚群, 刘博, 等. 岩石节理剪切力学特性的非线性理论模型研究 [J]. 岩石力学与工程学报, 2021, 40(12): 2421–2433. DOI: 10.13722/j.cnki.jrme.2021.0661.

    SHEN H, LIU Y Q, LIU B, et al. Nonlinear theoretical model for describing shear mechanical behaviors of rock joints [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(12): 2421–2433. DOI: 10.13722/j.cnki.jrme.2021.0661.
    [41] 王明洋, 李杰, 李凯锐. 深部岩体非线性力学能量作用原理与应用 [J]. 岩石力学与工程学报, 2015, 34(4): 659–667. DOI: 10.13722/j.cnki.jrme.2015.04.002.

    WANG M Y, LI J, LI K R. A nonlinear mechanical energy theory in deep rock mass engineering and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 659–667. DOI: 10.13722/j.cnki.jrme.2015.04.002.
    [42] 李杰, 王明洋, 蒋海明, 等. 爆炸与冲击中的非线性岩石力学问题(I): 一维块系岩体波动特性的试验研究 [J]. 岩石力学与工程学报, 2018, 37(1): 38–50. DOI: 10.13722/j.cnki.jrme.2017.0490.

    WANG M Y, JIANG H M, et al. Nonlinear mechanical problems in rock explosion and shock. Part Ⅰ: experimental research on properties of one-dimensional wave propagation in block rock masses [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 38–50. DOI: 10.13722/j.cnki.jrme.2017.0490.
    [43] 王明洋, 戚承志, 钱七虎. 深部岩体块系介质变形与运动特性研究 [J]. 岩石力学与工程学报, 2005, 24(16): 2825–2830. DOI: 10.3321/j.issn:1000-6915.2005.16.003.

    WANG M Y, QI C Z, QIAN Q H. Study on deformation and motion characteristics of blocks in deep rock mass [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2825–2830. DOI: 10.3321/j.issn:1000-6915.2005.16.003.
    [44] 王明洋, 周泽平, 钱七虎. 深部岩体的构造和变形与破坏问题 [J]. 岩石力学与工程学报, 2006, 25(3): 448–455. DOI: 10.3321/j.issn:1000-6915.2006.03.002.

    WANG M Y, ZHOU Z P, QIAN Q H. Tectonic, deformation and failure problems of deep rock mass [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 448–455. DOI: 10.3321/j.issn:1000-6915.2006.03.002.
    [45] 陶明. 高应力岩体的动态加卸荷扰动特征与动力学机理研究 [D]. 长沙: 中南大学, 2013.

    TAO M. Characteristic of the dynamic loading and unloading responses and dynamic mechanism of rocks under high initial stress [D]. Changsha: Central South University, 2013.
    [46] 冯帆, 赵兴东, 陈绍杰, 等. 结构面位置对于深部高应力采动硬岩巷道破坏的影响 [J]. 中南大学学报(自然科学版), 2021, 52(8): 2588–2600. DOI: 10.11817/j.issn.1672-7207.2021.08.007.

    ZHAO X D, CHEN S J, et al. Effect of structural plane position on hard tunnel failure during excavation unloading subjected to high stresses in deep level mines [J]. Journal of Central South University (Science and Technology), 2021, 52(8): 2588–2600. DOI: 10.11817/j.issn.1672-7207.2021.08.007.
    [47] 周辉, 孟凡震, 张传庆, 等. 深埋硬岩隧洞岩爆的结构面作用机制分析 [J]. 岩石力学与工程学报, 2015, 34(4): 720–727. DOI: 10.13722/j.cnki.jrme.2015.04.008.

    ZHOU H, MENG F Z, ZHANG C Q, et al. Effect of structural plane on rockburst in deep hard rock tunnels [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 720–727. DOI: 10.13722/j.cnki.jrme.2015.04.008.
    [48] FENG F, LI X B, ROSTAMI J, et al. Modeling hard rock failure induced by structural planes around deep circular tunnels [J]. Engineering Fracture Mechanics, 2019, 205: 152–174. DOI: 10.1016/j.engfracmech.2018.10.010.
    [49] 赵光明, 许文松, 孟祥瑞, 等. 扰动诱发高应力岩体开挖卸荷围岩失稳机制 [J]. 煤炭学报, 2020, 45(3): 936–948. DOI: 10.13225/j.cnki.jccs.SJ20.0133.

    ZHAO G M, XU W S, MENG X R, et al. Instability mechanism of high stress rock mass under excavation and unloading induced by disturbance [J]. Journal of China Coal Society, 2020, 45(3): 936–948. DOI: 10.13225/j.cnki.jccs.SJ20.0133.
    [50] 鲁俊. 深部煤岩真三轴力学响应特性及复合动力灾害研究 [D]. 重庆: 重庆大学, 2020. DOI: 10.27670/d.cnki.gcqdu.2020.000490.

    LU J. Research on the true triaxial mechanical response characteristics of deep coal rock and compound dynamic disaster [D]. Chongqing: Chongqing University, 2020. DOI: 10.27670/d.cnki.gcqdu.2020.000490.
    [51] 任建喜, 云梦晨, 张琨, 等. 静动组合三轴加载煤岩强度劣化试验研究 [J]. 煤炭科学技术, 2021, 49(11): 105–111. DOI: 10.13199/j.cnki.cst.2021.11.014.

    REN J X, YUN M C, ZHANG K, et al. Experimental research on coal and rock strength deterioration under combined static and dynamic triaxial loading [J]. Coal Science and Technology, 2021, 49(11): 105–111. DOI: 10.13199/j.cnki.cst.2021.11.014.
    [52] 李夕兵, 宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望 [J]. 煤炭学报, 2021, 46(3): 846–866. DOI: 10.13225/j.cnki.jccs.YT21.0176.

    LI X B, GONG F Q. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing [J]. Journal of China Coal Society, 2021, 46(3): 846–866. DOI: 10.13225/j.cnki.jccs.YT21.0176.
    [53] 杨嘉楠, 范鹏贤, 王德荣. 深埋岩体结构面受扰破坏失稳研究进展 [J]. 防护工程, 2022, 44(5): 68–78. DOI: 10.3969/j.issn.1674-1854.2022.05.012.

    YANG J N, FAN P X, WANG D R. Review on dynamic disturbance induced failure and instability of deep-buried rock mass discontinuity [J]. Protective Engineering, 2022, 44(5): 68–78. DOI: 10.3969/j.issn.1674-1854.2022.05.012.
    [54] 李杰, 蒋海明, 王明洋, 等. 爆炸与冲击中的非线性岩石力学问题(Ⅱ): 冲击扰动诱发岩块滑移的物理模拟试验 [J]. 岩石力学与工程学报, 2018, 37(2): 291–301. DOI: 10.13722/j.cnki.jrme.2017.0684.

    LI J, JIANG H M, WANG M Y, et al. Nonlinear mechanical problems in rock explosion and shock. Part II: physical model test on sliding of rock blocks triggered by external disturbance [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 291–301. DOI: 10.13722/j.cnki.jrme.2017.0684.
    [55] 于永江, 刘峰, 岳宏亮, 等. 不同倾角岩体结构面在循环动力扰动下的力学特性 [J]. 煤炭学报, 2020, 45(11): 3748–3758. DOI: 10.13225/j.cnki.jccs.2019.1344.

    YU Y J, LIU F, YUE H L, et al. Mechanical properties of discontinuity in rock mass with different inclination angles under cyclic dynamic disturbance [J]. Journal of China Coal Society, 2020, 45(11): 3748–3758. DOI: 10.13225/j.cnki.jccs.2019.1344.
    [56] FENG P, DAI F, LIU Y, et al. Effects of coupled static and dynamic strain rates on mechanical behaviors of rock-like specimens containing pre-existing fissures under uniaxial compression [J]. Canadian Geotechnical Journal, 2018, 55(5): 640–652. DOI: 10.1139/cgj-2017-0286.
    [57] 崔峰, 来兴平, 曹建涛, 等. 矿山动力灾害发生机理与防治策略 [J]. 煤矿安全, 2017, 48(1): 191–194,198. DOI: 10.13347/j.cnki.mkaq.2017.01.052.

    CUI F, LAI X P, CAO J T, et al. Occurrence mechanism and control strategies of mine dynamic disaster [J]. Safety in Coal Mines, 2017, 48(1): 191–194,198. DOI: 10.13347/j.cnki.mkaq.2017.01.052.
    [58] 赵康, 赵红宇, 贾群燕. 岩爆岩石断裂的微观结构形貌分析及岩爆机理 [J]. 爆炸与冲击, 2015, 35(6): 913–918. DOI: 10.11883/1001-1455(2015)06-0913-06.

    ZHAO K, ZHAO H Y, JIA Q Y. An analysis of rockburst fracture micromorphology and study of its mechanism [J]. Explosion and Shock Waves, 2015, 35(6): 913–918. DOI: 10.11883/1001-1455(2015)06-0913-06.
    [59] 苏国韶, 刘鑫锦, 闫召富, 等. 岩爆预警与烈度评价的声音信号分析 [J]. 爆炸与冲击, 2018, 38(4): 716–724. DOI: 10.11883/bzycj-2017-0383.

    SU G S, LIU X J, YAN Z F, et al. Sound signal analysis for warning and intensity evaluation of rockburst [J]. Explosion and Shock Waves, 2018, 38(4): 716–724. DOI: 10.11883/bzycj-2017-0383.
    [60] HE M C, REN F Q, LIU D Q. Rockburst mechanism research and its control [J]. International Journal of Mining Science and Technology, 2018, 28(5): 829–837. DOI: 10.1016/j.ijmst.2018.09.002.
    [61] 冯夏庭, 肖亚勋, 丰光亮, 等. 岩爆孕育过程研究 [J]. 岩石力学与工程学报, 2019, 38(4): 649–673. DOI: 10.13722/j.cnki.jrme.2019.0103.

    FENG X T, XIAO Y X, FENG G L, et al. Study on the development process of rockbursts [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 649–673. DOI: 10.13722/j.cnki.jrme.2019.0103.
    [62] 刘岩鑫, 蒋剑青, 苏国韶, 等. 弱动力扰动对花岗岩圆形隧洞岩爆影响的试验研究 [J]. 爆炸与冲击, 2020, 40(9): 095202. DOI: 10.11883/bzycj-2020-0003.

    LIU Y X, JIANG J Q, SU G S, et al. Experimental study on influence of weak dynamic disturbance on rockburst of granite in a circular tunnel [J]. Explosion and Shock Waves, 2020, 40(9): 095202. DOI: 10.11883/bzycj-2020-0003.
    [63] 刘啸, 华心祝, 黄志国, 等. 应力波作用下含大型结构面岩体垮塌动力失稳机制 [J]. 岩石力学与工程学报, 2021, 40(10): 2003–2014. DOI: 10.13722/j.cnki.jrme.2021.0395.

    LIU X, HUA X Z, HUANG Z G, et al. Dynamic collapse mechanisms of rock mass with large structural planes under stress waves [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(10): 2003–2014. DOI: 10.13722/j.cnki.jrme.2021.0395.
    [64] 康红普, 杨景贺. 锚杆组合构件力学性能实验室试验及分析 [J]. 煤矿开采, 2016, 21(3): 1–6. DOI: 10.13532/j.cnki.cn11-3677/td.2016.03.001.

    KANG H P, YANG J H. Laboratory experiment and analysis on mechanical performances of rock bolt components [J]. Coal Mining Technology, 2016, 21(3): 1–6. DOI: 10.13532/j.cnki.cn11-3677/td.2016.03.001.
    [65] 李建忠, 康红普, 高富强, 等. 原岩应力场作用下的锚杆支护应力场及作用分析 [J]. 煤炭学报, 2020, 45(S1): 99–109. DOI: 10.13225/j.cnki.jccs.2019.1410.

    LI J Z, KANG H P, GAO F Q, et al. Analysis of bolt support stress field and bolt support effect under in-situ stress field [J]. Journal of China Coal Society, 2020, 45(S1): 99–109. DOI: 10.13225/j.cnki.jccs.2019.1410.
    [66] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望 [J]. 岩石力学与工程学报, 2021, 40(1): 1–30. DOI: 10.13722/j.cnki.jrme.2020.0072.

    KANG H P. Seventy years development and prospects of strata control technologies for coal mine roadways in China [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1): 1–30. DOI: 10.13722/j.cnki.jrme.2020.0072.
    [67] 陶志刚, 林伟军, 李勇, 等. NPR锚索对跨断层软岩大变形隧道控制技术研究 [J]. 隧道建设(中英文), 2024, 44(S1): 113–123.

    TAO Z G, LIN W J, LI Y, et al. Control technology of negative Poisson′s ratio anchor cable for large deformation tunnel across faulted soft rocks [J]. Tunnel Construction, 2024, 44(S1): 113–123.
    [68] 陶志刚, 韩惠, 明伟, 等. 新型NPR锚杆支护系统抗动力冲击试验研究 [J]. 煤炭学报, 2023, 48(5): 2008–2021. DOI: 10.13225/j.cnki.jccs.2023.0239.

    TAO Z G, HAN H, MING W, et al. Experimental study on dynamic impact resistance of new NPR bolt support [J]. Journal of China Coal Society, 2023, 48(5): 2008–2021. DOI: 10.13225/j.cnki.jccs.2023.0239.
    [69] HE M C, GONG W L, WANG J, et al. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 29–42. DOI: 10.1016/j.ijrmms.2014.01.007.
    [70] 何满潮, 杜帅, 宫伟力, 等. 负泊松比锚杆/索力学特性及其工程应用1) [J]. 力学与实践, 2022, 44(1): 75–87. DOI: 10.6052/1000-0879-21-210.

    HE M C, DU S, GONG W L, et al. Mechanical characteristics and engineering applications of bolt/cable with negative Poisson’s ratio1) [J]. Mechanics in Engineering, 2022, 44(1): 75–87. DOI: 10.6052/1000-0879-21-210.
    [71] 单仁亮, 仝潇, 黄鹏程, 等. 管索组合结构及其力学性能研究 [J]. 岩土力学, 2022, 43(3): 602–614. DOI: 10.16285/j.rsm.2021.0764.

    SHAN R L, TONG X, HUANG P C, et al. Research on the anchor cable combined with the c-shaped tube and the mechanical properties [J]. Rock and Soil Mechanics, 2022, 43(3): 602–614. DOI: 10.16285/j.rsm.2021.0764.
    [72] SHAN R L, XIAO S C, LI Y Z, et al. Study on numerical simulation and mechanical properties of anchor cable with C-shaped tube subjected to shearing [J]. Scientific Reports, 2024, 14(1): 7425. DOI: 10.1038/s41598-024-58085-9.
    [73] 单仁亮, 宋威, 张书鹏, 等. 巷道支护管索组合结构剪切力学响应精细有限元分析 [J]. 岩石力学与工程学报, 2024, 43(7): 1561–1579. DOI: 10.13722/j.cnki.jrme.2023.0835.

    SHAN R L, SONG W, ZHANG S P, et al. Precise finite element analysis of shear mechanical responses of anchor cables with C-shaped tube in roadway support [J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(7): 1561–1579. DOI: 10.13722/j.cnki.jrme.2023.0835.
    [74] 单仁亮, 仝潇, 代卫林, 等. 管索组合结构支护新技术及其在深部大变形巷道应用研究 [J]. 矿业科学学报, 2023, 8(1): 39–49. DOI: 10.19606/j.cnki.jmst.2023.01.004.

    SHAN R L, TONG X, DAI W L, et al. Research on the new technology of anchor cable with C-shaped tube support and its application in deep large deformation roadway [J]. Journal of Mining Science and Technology, 2023, 8(1): 39–49. DOI: 10.19606/j.cnki.jmst.2023.01.004.
    [75] SHAN R L, XIAO S C, LIANG J Q, et al. Study on the double-sided shear test and three-dimensional numerical simulation of anchor cable with C-shaped tube [J]. Structures, 2024, 61: 106065. DOI: 10.1016/j.istruc.2024.106065.
    [76] 潘一山, 李忠华, 章梦涛. 我国冲击地压分布、类型、机理及防治研究 [J]. 岩石力学与工程学报, 2003, 22(11): 1844–1851. DOI: 10.3321/j.issn:1000-6915.2003.11.019.

    PAN Y S, LI Z H, ZHANG M T. Distribution, type, mechanism and prevention of rockbrust in China [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1844–1851. DOI: 10.3321/j.issn:1000-6915.2003.11.019.
    [77] 潘一山, 宋义敏, 刘军. 我国煤矿冲击地压防治的格局、变局和新局 [J]. 岩石力学与工程学报, 2023, 42(9): 2081–2095. DOI: 10.13722/j.cnki.jrme.2022.1048.

    PAN Y S, SONG Y M, LIU J. Pattern, change and new situation of coal mine rockburst prevention and control in China [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(9): 2081–2095. DOI: 10.13722/j.cnki.jrme.2022.1048.
    [78] 王国法, 潘一山, 赵善坤, 等. 冲击地压煤层如何实现安全高效智能开采 [J]. 煤炭科学技术, 2024, 52(1): 1–14. DOI: 10.12438/cst.2023-1656.

    WANG G F, PAN Y S, ZHAO S K, et al. How to realize safe-efficient-intelligent mining of rock burst coal seam [J]. Coal Science and Technology, 2024, 52(1): 1–14. DOI: 10.12438/cst.2023-1656.
    [79] KANG H P, JIANG P F, FENG Y J, et al. Application of large-scale hydraulic fracturing for reducing mining-induced stress and microseismic events: a comprehensive case study [J]. Rock Mechanics and Rock Engineering, 2023, 56(2): 1399–1413. DOI: 10.1007/s00603-022-03061-w.
    [80] 夏永学, 潘俊锋, 谢非, 等. 特厚煤层大巷复合构造区重复冲击致灾机制及控制技术 [J]. 岩石力学与工程学报, 2022, 41(11): 2199–2209. DOI: 10.13722/j.cnki.jrme.2022.0045.

    XIA Y X, PAN J F, XIE F, et al. Disaster mechanism and control technology of large roadway group with repeated impact in extra-thick coal seam [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(11): 2199–2209. DOI: 10.13722/j.cnki.jrme.2022.0045.
    [81] 潘一山, 肖永惠, 罗浩, 等. 冲击地压矿井安全性研究 [J]. 煤炭学报, 2023, 48(5): 1846–1860. DOI: 10.13225/j.cnki.jccs.2023.0294.

    PAN Y S, XIAO Y H, LUO H, et al. Study on safety of rockburst mine [J]. Journal of China Coal Society, 2023, 48(5): 1846–1860. DOI: 10.13225/j.cnki.jccs.2023.0294.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  13
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-22
  • 修回日期:  2024-12-31
  • 网络出版日期:  2025-01-06

目录

    /

    返回文章
    返回