• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

炮口冲击波作用下车载炮驾驶室支撑条件对其内流场超压的影响

魏胜程 尹强 徐亚栋 熊新宇

魏胜程, 尹强, 徐亚栋, 熊新宇. 炮口冲击波作用下车载炮驾驶室支撑条件对其内流场超压的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0401
引用本文: 魏胜程, 尹强, 徐亚栋, 熊新宇. 炮口冲击波作用下车载炮驾驶室支撑条件对其内流场超压的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0401
WEI Shengcheng, YIN Qiang, XU Yadong, XIONG Xinyu. Influence of support conditions on the flow field overpressure inside the crew compartment of a truck-mounted howitzer under muzzle blast[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0401
Citation: WEI Shengcheng, YIN Qiang, XU Yadong, XIONG Xinyu. Influence of support conditions on the flow field overpressure inside the crew compartment of a truck-mounted howitzer under muzzle blast[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0401

炮口冲击波作用下车载炮驾驶室支撑条件对其内流场超压的影响

doi: 10.11883/bzycj-2024-0401
基金项目: 国家自然科学基金(U2341269)
详细信息
    作者简介:

    魏胜程(1997- ),男,博士研究生,weishengcheng@njust.edu.cn

    通讯作者:

    尹 强(1980- ),男,博士,副教授,yinqiang@njust.edu.cn

  • 中图分类号: O389; TJ301

Influence of support conditions on the flow field overpressure inside the crew compartment of a truck-mounted howitzer under muzzle blast

  • 摘要: 为探究支撑条件改变对驾驶室内流场超压的具体影响,以某外贸型号装备为对象:建立了极限射击工况下、从炮口至驾驶室内部的冲击波传播数值模型;开展了涵盖驾驶室外、内流场超压与结构加速度等数据采集的系统性验证试验。基于经验证的数值模型,分别对8种不同支撑条件下的驾驶室内流场超压进行仿真计算。结果表明:虽然驾驶室内不同空间对支撑条件变化的响应敏感度不同,但随着支撑刚度由小到大变化,驾驶室结构的加速度、速度峰值均显著减小,内流场超压峰值减小;支撑阻尼的存在使得驾驶室结构的加速度响应明显增强,但有利于进一步减弱其速度响应、降低内流场的超压峰值。
  • 图  1  炮口冲击波传播阶段

    Figure  1.  The stage of propagation for muzzle blast

    图  2  网格模型示意图

    Figure  2.  Schematic diagram of grid model

    图  3  计算域物理模型及边界设置

    Figure  3.  Physical model and boundary setting of computing domains

    图  4  驾驶室的支撑条件

    Figure  4.  Constraint conditions of crew compartment

    图  5  仿真求解流程

    Figure  5.  The simulation solution process for muzzle

    图  6  射击试验方案

    Figure  6.  Firing experiment scheme

    图  7  驾驶室外、内传感器布置位置

    Figure  7.  Placements of sensors both externally and internally within the CCTMH

    图  8  外流场、内流场冲击波超压-时间曲线试验结果与仿真结果对比

    Figure  8.  Comparison of experimental and numerical overpressure-time curves of the FFOCC and FFICC

    图  9  驾驶室结构加速度-时间曲线试验结果及仿真结果对比

    Figure  9.  Comparison of experimental and numerical acceleration-time curves of Str-CC

    图  10  驾驶室结构采样点

    Figure  10.  Sampling points of the Str-CC

    图  11  驾驶室结构对炮口冲击波载荷的速度响应

    Figure  11.  Velocity response of the Str-CC to muzzle blast loads

    图  12  各结构点最大响应速度对比

    Figure  12.  Comparison of maximum response velocities at various structural points

    图  13  不同支撑条件下驾驶室支撑装置附近测试点处的结构响应

    Figure  13.  Structural response near the support device of the Str-CC under different support conditions

    图  14  不同支撑条件下驾驶室主要迎波面上测试点处的结构响应

    Figure  14.  Structural response on the main pressure-bearing surface of the Str-CC under different support conditions

    图  15  不同支撑条件下驾驶室内流场超压峰值

    Figure  15.  Maximum overpressures in the FFICC under different support conditions

    图  16  不同支撑条件下测试点I-ps1处的超压最小值及超压均值

    Figure  16.  Minimum and average overpressures at I-ps1 under different support conditions

    表  1  各计算域网格数量

    Table  1.   Number of grids in each computing domain

    计算域网格类型网格数量
    驾驶室外流场四面体非结构网格14 221 352
    驾驶室内流场四面体非结构网格(动网格)5 023 750
    驾驶室结构场壳单元结构网格700 647
    下载: 导出CSV

    表  2  材料参数

    Table  2.   Parameters of materials

    材料 密度/(kg·m−3) 弹性模量/GPa 剪切模量/GPa 泊松比 屈服强度/MPa 抗拉强度/MPa 抗弯强度/MPa
    防弹钢板 7850 210 79.4 0.3 800 900
    普通钢板 7850 210 79.4 0.3 245 390
    防弹玻璃 2500 70 30 0.24 80
    下载: 导出CSV

    表  3  不同工况下的支撑刚度和阻尼

    Table  3.   Support stiffness and damping under different conditions

    工况 kl(=kr)/(kN·mm−1) cl(=cr)/(N·m−1·s) kl(=kr)/(kN·mm−1) cl(=cr)/(N·m−1·s) kl(=kr)/(kN·mm−1)
    1 1 0 5 40 4200
    2 10 0 6 42.5 0
    3 35 0 7 45 0
    4 40 0 8 60 0
    下载: 导出CSV

    表  4  传感器参数

    Table  4.   Parameters of sensors

    设备名称型号灵敏度量程
    压力传感器(外流场)KISTLER 211B43.626 mV/kPa1400 kPa
    压力传感器(内流场)KISTLER 211B614.50 mV/kPa340 kPa
    加速度传感器KISTLER 8763B100BB57.46 mV/g±100g
    下载: 导出CSV

    表  5  超压峰值的仿真结果与试验结果的对比

    Table  5.   Comparison between simulated and experimental peak overpressures

    压力传感器 冲击波超压峰值/kPa 仿真值与试验平均值的
    相对误差/%
    仿真 试验1 试验2 试验3 试验平均值
    O-ps1170.93147.81165.94170.27161.345.94
    O-ps2154.73158.21153.09−−155.650.59
    O-ps3104.8392.18101.93106.24100.124.70
    O-ps467.4558.2465.0066.1263.126.86
    O-ps5290.52291.95294.55260.83282.442.86
    I-ps13.382.964.083.453.503.43
    I-ps24.29
    I-ps35.786.576.096.416.358.98
    I-ps46.015.155.315.305.2514.41
    I-ps53.362.822.673.763.089.09
     注:−表示未获得相关有效数据。
    下载: 导出CSV
  • [1] 钱林方, 徐亚栋, 陈龙淼. 车载炮设计理论和方法 [M]. 北京: 科学出版社, 2022: 1–2.
    [2] 魏胜程, 钱林方, 徐亚栋, 等. 车载炮驾驶室表面炮口冲击波超压特性 [J]. 兵工学报, 2024, 45(11): 3792–3805. DOI: 10.12382/bgxb.2023.0687.

    WEI S C, QIAN L F, XU Y D, et al. Characteristics of muzzle shock wave overpressure on the surface of vehicle-mounted howitzer’s crew compartment [J]. Acta Armamentarii, 2024, 45(11): 3792–3805. DOI: 10.12382/bgxb.2023.0687.
    [3] WEI S C, QIAN L F, XU Y D, et al. Flow field distribution and overpressure characteristics inside the crew compartment of a truck-mounted howitzer under the effect of muzzle blast [J]. Defence Technology, 2025, 44: 190–205. DOI: 10.1016/j.dt.2024.09.008.
    [4] LI Z J, WANG H, CHEN C S, et al. Numerical and experimental investigation into the evolution of the shock wave when a muzzle jet impacts a constrained moving body [J]. Defence Technology, 2024, 33: 317–326. DOI: 10.1016/j.dt.2023.09.012.
    [5] 缪伟, 尹强, 钱林方. 火炮后效期火药气体流空过程的近似计算方法 [J]. 兵工学报, 2021, 42(7): 1381–1391. DOI: 10.3969/j.issn.1000-1093.2021.07.005.

    MIAO W, YIN Q, QIAN L F. An approximate calculation method for ejection of propellant gas during after-effect period of artillery [J]. Acta Armamentarii, 2021, 42(7): 1381–1391. DOI: 10.3969/j.issn.1000-1093.2021.07.005.
    [6] 王丹宇, 南风强, 廖昕, 等. 考虑化学反应的大口径火炮炮口流场特性 [J]. 兵工学报, 2021, 42(8): 1624–1630. DOI: 10.3969/j.issn.1000-1093.2021.08.006.

    WANG D Y, NAN F Q, LIAO X, et al. Characteristics of muzzle flow field of large caliber gun considering chemical reaction [J]. Acta Armamentarii, 2021, 42(8): 1624–1630. DOI: 10.3969/j.issn.1000-1093.2021.08.006.
    [7] BAI W B, YU Y G, ZHANG X W. Numerical simulation of the underwater gun using gas-curtain launch [J]. Physics of Fluids, 2024, 36(3): 036128. DOI: 10.1063/5.0196584.
    [8] 孙全兆, 范社卫, 王殿荣, 等. 某突击炮炮口流场数值模拟研究 [J]. 弹道学报, 2019, 31(4): 63–67. DOI: 10.12115/j.issn.1004-499X(2019)04-011.

    SUN Q Z, FAN S W, WANG D R, et al. Numerical study of muzzle flow field of assault gun [J]. Journal of Ballistics, 2019, 31(4): 63–67. DOI: 10.12115/j.issn.1004-499X(2019)04-011.
    [9] LI P F, ZHANG X B. Numerical research on adverse effect of muzzle flow formed by muzzle brake considering secondary combustion [J]. Defence Technology, 2021, 17(4): 1178–1189. DOI: 10.1016/j.dt.2020.06.019.
    [10] LI P F, ZHANG X B. Numerical research on the impinging effect of sequential muzzle blast waves formed by successive shooting at high frequency [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(9): 1416–1427. DOI: 10.1002/prep.202000043.
    [11] SUN Z Q, LI Q, QU P, et al. Numerical investigation of the flame suppression mechanism of porous muzzle brake [J]. Physics of Fluids, 2023, 35(7): 075120. DOI: 10.1063/5.0156175.
    [12] 康越, 马天, 王俊龙, 等. 不同海拔高度炮口冲击波动态演化特性数值模拟研究 [J]. 爆炸与冲击, 2024, 44(12): 121421. DOI: 10.11883/bzycj-2024-0108.

    KANG Y, MA T, WANG J L, et al. Numerical simulation study on the dynamic evolution characteristics of muzzle shock waves at different altitudes [J]. Explosion and Shock Waves, 2024, 44(12): 121421. DOI: 10.11883/bzycj-2024-0108.
    [13] 余海伟, 袁军堂, 汪振华, 等. 新型结构炮口制退器的膛口冲击波数值研究与性能分析 [J]. 高压物理学报, 2020, 34(6): 101–111. DOI: 10.11858/gywlxb.20200568.

    YU H W, YUAN J T, WANG Z H, et al. Muzzle blast wave investigation and performance analysis of new-structure muzzle brake based on numerical simulation [J]. Chinese Journal of high Pressure Physics, 2020, 34(6): 101–111. DOI: 10.11858/gywlxb.20200568.
    [14] 李鸿志, 姜孝海, 王杨, 等. 中间弹道学 [M]. 北京: 北京理工大学出版社, 2014: 35–41.

    LI H Z, JIANG X H, WANG Y, et al. Intermediate ballistics [M]. Beijing: Beijing Institute of Technology Press, 2014: 35–41.
    [15] ZHUO C F, FENG F, WU X S, et al. Numerical simulation of the muzzle flows with base bleed projectile based on dynamic overlapped grids [J]. Computers and Fluids, 2014, 105: 307–320. DOI: 10.1016/j.compfluid.2014.08.006.
    [16] LUO Y, XU D, LI H. Analysis of the dynamic characteristics of the muzzle flow field and investigation of the influence of projectile nose shape [J]. Applied Sciences, 2020, 10(4): 1468. DOI: 10.3390/app10041468.
    [17] LEI H X, ZHAO J L, WANG Z J. Numerical simulation and experiments on muzzle blast overpressure in large-caliber weapons [J]. Journal of Engineering Science and Technology Review, 2016, 9(5): 111–116. DOI: 10.25103/jestr.095.17.
    [18] CHEN Q K, LI P F, ZHOU Q, et al. Research on the measurement of muzzle shock wave pressure field for a naval gun [J]. IOP Conference Series: Earth and Environmental Science, 2021, 791(1): 012096. DOI: 10.1088/1755-1315/791/1/012096.
    [19] MOUMEN A, STIRBU B, GROSSEN J, et al. Particle image velocimetry for velocity measurement of muzzle flow: detailed experimental study [J]. Powder Technology, 2022, 405: 117509. DOI: 10.1016/J.POWTEC.2022.117509.
    [20] 赖富文, 孔凡胜, 高赫, 等. 基于LXI总线的炮口冲击波分布式测试系统设计 [J]. 兵器装备工程学报, 2021, 42(9): 183–188. DOI: 10.11809/bqzbgcxb2021.09.029.

    LAI F W, KONG F S, GAO H, et al. Design of distributed system for measuring muzzle blast wave based on LXI bus [J]. Journal of Ordnance Equipment Engineering, 2021, 42(9): 183–188. DOI: 10.11809/bqzbgcxb2021.09.029.
    [21] SEKAR V, JIANG Q H, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach [J]. Physics of Fluids, 2019, 31(5): 057103. DOI: 10.1063/1.5094943.
    [22] DURU C, ALEMDAR H, BARAN O U. A deep learning approach for the transonic flow field predictions around airfoils [J]. Computers and Fluids, 2022, 236: 105312. DOI: 10.1016/j.compfluid.2022.105312.
    [23] NGUYEN N T T, MASKALY G R, LIAO A S, et al. Predicting shockwaves in radiograph images using different deep learning models [C]//SPIE Optical Engineering+Applications. San Diego: SPIE, 2021: 112–123. DOI: 10.1117/12.2594621.
    [24] HUI X Y, BAI J Q, WANG H, et al. Fast pressure distribution prediction of airfoils using deep learning [J]. Aerospace Science and Technology, 2020, 105: 105949. DOI: 10.1016/j.ast.2020.105949.
    [25] JIN S Y, CHEN S S, FENG C, et al. Deep learning for airfoil aerodynamic-electromagnetic coupling optimization with random forest [J]. Physics of Fluids, 2024, 36(1): 017110. DOI: 10.1063/5.0182455.
    [26] ZHOU M D, QIAN L F, CAO C Y, et al. Research on simulation of gun muzzle flow field empowered by artificial intelligence [J]. Defence Technology, 2024, 32: 196–208. DOI: 10.1016/j.dt.2023.02.006.
    [27] 陈钢. 内腔声-结构耦合系统的数值模拟与优化设计 [D]. 大连: 大连理工大学, 2008: 15–33.

    CHEN G. Numerical simulation and design optimization for interior acoustic-structural coupled systems [D]. Dalian: Dalian University of Technology, 2008: 15–33.
    [28] 王彬星. 重型汽车车内声压级预测与主要噪声源分析 [D]. 北京: 清华大学, 2013: 83–111.

    WANG B X. Sound pressure level prediction and main source analysis of heavy duty truck interior noise [D]. Beijing: Tsinghua University, 2013: 83–111.
    [29] MA J, WANG J, HAN Y, et al. Towards data-driven modeling for complex contact phenomena via self-optimized artificial neural network methodology [J]. Mechanism and Machine Theory, 2023, 182: 105223. DOI: 10.1016/j.mechmachtheory.2022.105223.
    [30] 魏然. 爆炸冲击下车身结构防护机理及多学科优化研究 [D]. 南京: 南京理工大学, 2017: 29–52.

    WEI R. Protection mechanism and multidisciplinary optimization of vehicle body structure under blast shock [D]. Nanjing: Nanjing University of Science and Technology, 2017: 29–52.
    [31] MA J, BAI M H, WANG J, et al. A novel variable restitution coefficient model for sphere-substrate elastoplastic contact/impact process [J]. Mechanism and Machine Theory, 2024, 202: 105773. DOI: 10.1016/j.mechmachtheory.2024.105773.
    [32] ZHOU S J, CHEN G S, QIAN L F, et al. HLFEMP: a coupled MPM-FEM method under a hybrid updated and total lagrangian framework [J]. Applied Mathematical Modelling, 2024, 136: 115644. DOI: 10.1016/j.apm.2024.115644.
    [33] ZHUO C F, YAO W J, WU X S, et al. Research on the muzzle blast flow with gas-particle mixtures based on Eulerian-Eulerian approach [J]. Journal of Mechanics, 2016, 32(2): 185–195. DOI: 10.1017/jmech.2015.44.
    [34] 张小兵. 枪炮内弹道学 [M]. 北京: 北京理工大学出版社, 2014: 142–144.

    ZHANG X B. Interior ballistics of guns [M]. Beijing: Beijing Institute of Technology Press, 2014: 142–144.
    [35] 陈南. 汽车振动与噪声控制 [M]. 3版. 北京: 人民交通出版社, 2021: 62–76.
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  11
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-22
  • 修回日期:  2025-03-14
  • 网络出版日期:  2025-03-17

目录

    /

    返回文章
    返回