• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

加载速率对ACC结构抗剪性能的影响

单仁亮 肖圣超 宋威 柏皓博 李泳臻 赵鑫鹏 仝潇

单仁亮, 肖圣超, 宋威, 柏皓博, 李泳臻, 赵鑫鹏, 仝潇. 加载速率对ACC结构抗剪性能的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0403
引用本文: 单仁亮, 肖圣超, 宋威, 柏皓博, 李泳臻, 赵鑫鹏, 仝潇. 加载速率对ACC结构抗剪性能的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0403
SHAN Renliang, XIAO Shengchao, SONG Wei, BAI Haobo, LI Yongzhen, ZHAO Xinpeng, TONG Xiao. Effect of loading rate on the shear performance of ACC structures[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0403
Citation: SHAN Renliang, XIAO Shengchao, SONG Wei, BAI Haobo, LI Yongzhen, ZHAO Xinpeng, TONG Xiao. Effect of loading rate on the shear performance of ACC structures[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0403

加载速率对ACC结构抗剪性能的影响

doi: 10.11883/bzycj-2024-0403
基金项目: 国家自然科学基金(52274148)
详细信息
    作者简介:

    单仁亮(1964- ),男,博士,教授,博士生导师,srl@cumtb.edu.cn

    通讯作者:

    肖圣超(1996- ),男,博士研究生,xsc15650702592@126.com

  • 中图分类号: O383

Effect of loading rate on the shear performance of ACC structures

  • 摘要: 通过试验和数值模拟分析,研究了锚索和新型管索组合结构(anchor cable with C-shaped tube,ACC)在不同加载速率下的双结构面剪切力学特性和变形破坏机制。在混凝土试块强度为55 MPa、预应力为200 kN的条件下,分别以2、10、20、30、40 mm/min的剪切位移加载速率进行双结构面剪切试验。试验以剪切变形曲线、结构峰值剪切荷载、钢丝破坏形态和结构面抗剪强度贡献为主要参数。结果表明:加载速率对结构的抗剪性能有显著的影响,在一定的加载速率区间内,受损伤累积速度和应变率强化效应的影响,结构分别表现出强度弱化和强度强化的特性,抗剪承载能力出现较大的变化。在结构面附近,支护结构表现出拉剪组合破坏现象,但由于ACC结构中C形管的存在,应力集中效应降低,试验曲线波动减弱,内部钢丝受剪切作用破坏的情况与锚索相比明显减弱。同时,以试验结果为基础构建的ACC结构双剪试验数值模型的准确性较高,动荷载试验的数值模拟结果表明,ACC结构形成的锚固系统具备良好的吸能效果,冲击能量越大,吸能效果越明显;且ACC结构在高速冲击作用下,表现出明显的应变率强化效应,冲击速度越高,抗剪承载能力越强。
  • 图  1  管索组合结构示意图[12]

    Figure  1.  Schematic diagram of anchor cable with C-shaped tube[12]

    图  2  试验系统图

    Figure  2.  Schematic diagram of test system

    1. Computer-controlled module;2. Tensile-testing module;3. Shear-testing module;4. Tensile load application end;5. Anchored termination of support member;6. Shear load application end;7. Shear box and concrete specimen;8. Test support member;9. Bracing beam and fixed column;10. Shear-testing support pedestal

    图  3  支护结构的剪切荷载和轴向荷载随剪切位移的变化

    Figure  3.  Shear and axial loads of support structures varied with shear displacement

    图  4  支护构件的峰值剪切荷载

    Figure  4.  Peak shear capacity of support members

    图  5  不同加载速率下支护构件的破坏形态

    Figure  5.  Failure morphologies of support members under different loading rates

    图  6  钢丝的剪切破断数量随加载速率的变化

    Figure  6.  Variation of shear-induced fractures in steel wires with loading rate

    图  7  ACC结构的抗剪作用机理示意图

    Figure  7.  Schematic diagram of shear resistance mechanism in ACC structure

    图  8  ACC结构双剪试验数值模型

    Figure  8.  Numerical model of double shear test for ACC Structure

    图  9  数值模拟中ACC结构的变形过程

    Figure  9.  Deformation evolution of ACC structures in numerical simulation

    图  10  数值模拟与试验得到的剪切荷载-剪切位移曲线

    Figure  10.  Shear load-displacement curves obtained from numerical simulation and experimental tests

    图  11  数值模拟与试验得到的混凝土受压损伤区域

    Figure  11.  Compressive damage zones in concrete obtained from numerical simulation and experimental validation

    图  12  动态冲击荷载下双剪试验的数值模型

    Figure  12.  Numerical model for double shear test under dynamic impact loading

    图  13  ACC结构内部锚索的应力变化

    Figure  13.  Stress variation in internal anchor cables of the ACC structure

    图  14  冲击荷载作用下ACC结构的吸能与峰值剪切荷载

    Figure  14.  Energy absorption and peak shear load in ACC structures under impact loads

    表  1  混凝土试块参数

    Table  1.   Parameters of concrete specimens

    密度/
    (kg·m−3)
    弹性模量/
    GPa
    泊松比 剪胀角/(°) 内聚力/
    MPa
    抗压强度/
    MPa
    2400 38.5 0.2 38 1.0 55
    下载: 导出CSV

    表  2  加载速率剪切试验方案

    Table  2.   Shear testing protocol under different loading rates

    结构类型加载速率/(mm·min−1)预应力/kN索径/mm长度/mm
    锚索2~4020017.81400
    ACC2~4020017.81400
    下载: 导出CSV

    表  3  锚索与ACC结构在5种不同加载速率条件下的峰值荷载与破断位移

    Table  3.   Peak load and failure displacement of anchor cables and ACC structures under five loading rate conditions

    加载速率/(mm·min−1)结构类型峰值剪切荷载/kN峰值轴向荷载/kN破断位移/mm
    2锚索435.18304.1983.21
    ACC654.12330.2181.71
    10锚索331.62305.3653.79
    ACC609.81328.3368.36
    20锚索314.43300.1249.35
    ACC511.34313.9268.87
    30锚索329.08295.6145.46
    ACC560.77322.6670.10
    40锚索373.29311.5258.73
    ACC655.27332.0683.19
    下载: 导出CSV

    表  4  锚索和ACC结构的抗剪性能相关参数

    Table  4.   Comparative parameters of shear performance between anchor cables and ACC structures

    加载速率/(mm·min−1) 结构类型 $ {T}_{\max}^{*} $ $ P $/% $ {\eta }_{{\mathrm{c}}} $/%
    2 锚索 0.60 50.31 33.47
    ACC 0.89
    10 锚索 0.45 83.89 45.62
    ACC 0.84
    20 锚索 0.43 62.62 38.51
    ACC 0.70
    30 锚索 0.45 70.41 41.32
    ACC 0.77
    40 锚索 0.51 75.54 43.03
    ACC 0.90
    下载: 导出CSV

    表  5  锚索参数

    Table  5.   Parameters of the anchor cable

    密度/
    (kg·m−3)
    弹性模量/
    GPa
    屈服应力/
    MPa
    泊松比 截面积/
    mm2
    直径/
    mm
    7800 208.4 1662 0.31 193.98 17.8
    下载: 导出CSV

    表  6  C形管参数

    Table  6.   Parameters of C-shaped tube

    密度/
    (kg·m−3)
    弹性模量/
    GPa
    屈服应力/
    MPa
    泊松比 外径/
    mm
    内径/
    mm
    7850 210 345 0.3 28 24
    下载: 导出CSV
  • [1] 陈昊祥, 王明洋, 李杰. 深部岩体变形破坏的特征能量因子与应用 [J]. 爆炸与冲击, 2019, 39(8): 081103. DOI: 10.11883/bzycj-2019-0191.

    CHEN H X, WANG M Y, LI J. A characteristic energy factor for deformation and failure of deep rock masses and its application [J]. Explosion and Shock Waves, 2019, 39(8): 081103. DOI: 10.11883/bzycj-2019-0191.
    [2] 王明洋, 徐天涵, 邓树新, 等. 深部硐室长期稳定性的两个力学问题 [J]. 爆炸与冲击, 2021, 41(7): 071101. DOI: 10.11883/bzycj-2021-0023.

    WANG M Y, XU T H, DENG S X, et al. Mechanical problems for the long-term stability of rocks surrounding deep level underground tunnels [J]. Explosion and Shock Waves, 2021, 41(7): 071101. DOI: 10.11883/bzycj-2021-0023.
    [3] MENG X, REN Q Y, XIAO S Q, et al. Numerical simulation of mechanical characteristics and tension-torsion coupling effect of tension-type anchor cable [J]. Engineering Computations, 2023, 40(9/10): 2730–2753. DOI: 10.1108/EC-08-2023-0440.
    [4] 丁瑜, 王全才, 何思明. 拉力分散型锚索锚固段荷载传递机制 [J]. 岩土力学, 2010, 31(2): 599–603. DOI: 10.16285/j.rsm.2010.02.026.

    DING Y, WANG Q C, HE S M. Loading transfer mechanism of dispersion-type tensile cables along anchoring section [J]. Rock and Soil Mechanics, 2010, 31(2): 599–603. DOI: 10.16285/j.rsm.2010.02.026.
    [5] 沈俊, 顾金才, 张向阳, 等. 拉力型和压力型自由式锚索现场拉拔试验研究 [J]. 岩石力学与工程学报, 2012, 31(S1): 3291–3297. DOI: 10.3969/j.issn.1000-6915.2012.z1.094.

    SHEN J, GU J C, ZHANG X Y, et al. Field pull-out test research on tension and pressrue unbonded anchor cables [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3291–3297. DOI: 10.3969/j.issn.1000-6915.2012.z1.094.
    [6] JALALIFAR H, AZIZ N, HADI M. The effect of surface profile, rock strength and pretension load on bending behaviour of fully grouted bolts [J]. Geotechnical & Geological Engineering, 2006, 24(5): 1203–1227. DOI: 10.1007/s10706-005-1340-6.
    [7] AZIZ N, HOSSEIN J, HADI M S N. The effect of resin thickness on bolt-grout-concrete interaction in shear [C]//Coal 2005: 3–9.
    [8] FERRERO A M. The shear strength of reinforced rock joints [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(6): 595–605. DOI: 10.1016/0148-9062(95)00002-X.
    [9] GORIS J M, MARTIN L A, CURTIN R P. Shear behaviour of cable bolt supports in horizontal bedded deposits [J]. Cim Bulletin, 1996, 89: 124–128.
    [10] GRASSELLI G. 3D Behaviour of bolted rock joints: experimental and numerical study [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(1): 13–24. DOI: 10.1016/j.ijrmms.2004.06.003.
    [11] JALALIFAR H, AZIZ N. Experimental and 3D numerical simulation of reinforced shear joints [J]. Rock Mechanics and Rock Engineering, 2010, 43(1): 95–103. DOI: 10.1007/s00603-009-0031-7.
    [12] 单仁亮, 陶宇, 孔祥松, 等. 能承担横向剪切力的锚管索支护结构: CN201410206614.5 [P]. 2016-03-02.

    SHAN R L, TAO Y, KONG X S, et al. Composite support method of longitudinal beam in coal roadway: CN201410206614.5 [P]. 2016-03-02.
    [13] 单仁亮, 仝潇, 黄鹏程, 等. 管索组合结构及其力学性能研究 [J]. 岩土力学, 2022, 43(3): 602–614. DOI: 10.16285/j.rsm.2021.0764.

    SHAN R L, TONG X, HUANG P C, et al. Research on the anchor cable combined with the c-shaped tube and the mechanical properties [J]. Rock and Soil Mechanics, 2022, 43(3): 602–614. DOI: 10.16285/j.rsm.2021.0764.
    [14] SHAN R L, XIAO S C, LIANG J Q, et al. Study on the double-sided shear test and three-dimensional numerical simulation of anchor cable with C-shaped tube [J]. Structures, 2024, 61: 106065. DOI: 10.1016/j.istruc.2024.106065.
    [15] 单仁亮, 仝潇, 代卫林, 等. 管索组合结构支护新技术及其在深部大变形巷道应用研究 [J]. 矿业科学学报, 2023, 8(1): 39–49. DOI: 10.19606/j.cnki.jmst.2023.01.004.

    SHAN R L, TONG X, DAI W L, et al. Research on the new technology of anchor cable with C-shaped tube support and its application in deep large deformation roadway [J]. Journal of Mining Science and Technology, 2023, 8(1): 39–49. DOI: 10.19606/j.cnki.jmst.2023.01.004.
    [16] 刘海峰, 宁建国. 冲击荷载作用下混凝土材料的细观本构模型 [J]. 爆炸与冲击, 2009, 29(3): 261–267. DOI: 10.11883/1001-1455(2009)03-0261-07.

    LIU H F, NING J G. A meso-mechanical constitutive model of concrete subjected to impact loading [J]. Explosion and Shock Waves, 2009, 29(3): 261–267. DOI: 10.11883/1001-1455(2009)03-0261-07.
    [17] 张永杰, 陈力, 谢普初, 等. ABAQUS混凝土损伤塑性模型中损伤因子的率相关性及实现方法 [J]. 爆炸与冲击, 2022, 42(10): 103103. DOI: 10.11883/bzycj-2021-0464.

    ZHANG Y J, CHEN L, XIE P C, et al. Rate correlation of the ABAQUS damage parameter in the concrete damage plasticity model and its realization method [J]. Explosion and Shock Waves, 2022, 42(10): 103103. DOI: 10.11883/bzycj-2021-0464.
    [18] 赵武超, 钱江, 张文娜. 冲击荷载下钢筋混凝土梁的性能及损伤评估 [J]. 爆炸与冲击, 2019, 39(1): 015102. DOI: 10.11883/bzycj-2017-0288.

    ZHAO W C, QIAN J, ZHANG W N. Performance and damage evaluation of RC beams under impact loading [J]. Explosion and Shock Waves, 2019, 39(1): 015102. DOI: 10.11883/bzycj-2017-0288.
    [19] 张书鹏. 深部穿层巷道管索组合结构支护理论与技术研究 [D]. 北京: 中国矿业大学(北京), 2022: 54–56. DOI: 10.27624/d.cnki.gzkbu.2022.000132.

    ZHANG S P. Study on the theory and technology of Anchor Cable with C-shaped tube structure support in deep roadway [D]. Beijing: China University of Mining & Technology (Beijing), 2022: 54–56. DOI: 10.27624/d.cnki.gzkbu.2022.000132.
    [20] PELLET F, EGGER P. Analytical model for the mechanical behaviour of bolted rock joints subjected to shearing [J]. Rock Mechanics and Rock Engineering, 1996, 29(2): 73–97. DOI: 10.1007/BF01079755.
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  28
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-23
  • 修回日期:  2025-01-06
  • 网络出版日期:  2025-01-07

目录

    /

    返回文章
    返回