• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

加载速率对ACC结构抗剪性能的影响

单仁亮 肖圣超 宋威 柏皓博 李泳臻 赵鑫鹏 仝潇

单仁亮, 肖圣超, 宋威, 柏皓博, 李泳臻, 赵鑫鹏, 仝潇. 加载速率对ACC结构抗剪性能的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0403
引用本文: 单仁亮, 肖圣超, 宋威, 柏皓博, 李泳臻, 赵鑫鹏, 仝潇. 加载速率对ACC结构抗剪性能的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0403
SHAN Renliang, XIAO Shengchao, SONG Wei, BAI Haobo, LI Yongzhen, ZHAO Xinpeng, TONG Xiao. Effect of loading rate on the shear performance of ACC structures[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0403
Citation: SHAN Renliang, XIAO Shengchao, SONG Wei, BAI Haobo, LI Yongzhen, ZHAO Xinpeng, TONG Xiao. Effect of loading rate on the shear performance of ACC structures[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0403

加载速率对ACC结构抗剪性能的影响

doi: 10.11883/bzycj-2024-0403
基金项目: 国家自然科学基金(52274148)
详细信息
    作者简介:

    单仁亮(1964- ),男,博士,教授,博士生导师,srl@cumtb.edu.cn

    通讯作者:

    肖圣超(1996- ),男,博士研究生,xsc15650702592@126.com

  • 中图分类号: O383

Effect of loading rate on the shear performance of ACC structures

  • 摘要: 通过试验和数值模拟分析,研究了锚索和新型管索组合结构(anchor cable with C-shaped tube,ACC)在不同加载速率条件下的双结构面剪切力学特性和变形破坏机制。在混凝土试块强度为55 MPa,预应力为200 kN条件下,分别以2、10、20、30、40 mm/min的剪切位移加载速率进行双结构面剪切试验。试验以剪切变形曲线、结构峰值剪切荷载、钢丝破坏形态和结构面抗剪强度贡献为主要参数。结果表明:加载速率对结构的抗剪性能有显著的影响,在一定的加载速率区间内,受损伤累积速度和应变率强化效应的影响,结构分别表现出强度弱化和强度强化的特性,抗剪承载能力出现较大的变化。在结构面附近,支护结构表现出拉剪组合破坏现象,但由于ACC结构中C形管的存在,应力集中效应降低,试验曲线波动减弱,内部钢丝受剪切作用破坏的情况与锚索相比明显减弱。同时,以试验结果为基础构建的ACC结构双剪试验数值模型的准确性较高,动荷载试验的数值模拟结果表明,ACC结构形成的锚固系统具备良好的吸能效果,冲击能量越大,吸能效果越明显;且ACC结构在高速冲击作用下,表现出明显的应变率强化效应,冲击速度越大,抗剪承载能力越高。
  • 图  1  管索组合结构示意图

    Figure  1.  Schematic diagram of anchor cable with C-shaped tube

    图  2  试验系统图

    Figure  2.  Schematic diagram of test system

    1. Computer-Controlled Module;2. Tensile-Testing Module;3. Shear-Testing Module;4. Tensile Load Application End;5. Anchored Termination of Support Member;6. Shear Load Application End;7. Shear Box and Concrete Specimen;8. Test Support Member;9. Bracing Beam and Fixed Column;10. Shear-Testing Support Pedestal

    图  3  支护结构的剪切荷载和轴向荷载随剪切位移变化曲线

    Figure  3.  Shear and axial load response curves of support structures versus shear displacement

    图  4  支护构件的峰值剪切荷载

    Figure  4.  Peak shear capacity of support members

    图  5  不同加载速率下支护构件的破坏形态

    Figure  5.  Failure morphologies of support members under varied loading rates

    图  6  钢丝的剪切破断数量变化

    Figure  6.  Evolution of shear-induced fractures in steel wires

    图  7  ACC结构的抗剪作用机理示意图

    Figure  7.  Schematic diagram of shear resistance mechanism in Acc structure

    图  8  ACC结构双剪试验数值模型

    Figure  8.  Numerical model of double shear test for ACC Structure

    图  9  数值模拟中ACC结构的变形过程

    Figure  9.  Deformation evolution of ACC structures in numerical simulation

    图  10  数值模拟与试验得到的剪切荷载-剪切位移曲线

    Figure  10.  Comparative shear load-displacement curves from numerical simulation and experimental tests

    图  11  数值模拟与试验得到的混凝土受压损伤区域

    Figure  11.  Compressive damage zones in concrete: numerical simulation versus experimental validation

    图  12  动态冲击荷载下双剪试验的数值模型

    Figure  12.  Numerical model of double shear test under dynamic impact loading

    图  13  ACC结构内部锚索的应力变化

    Figure  13.  Stress variation in internal anchor cables of the acc structure

    图  14  冲击荷载作用下ACC结构的吸能与峰值剪切荷载

    Figure  14.  Energy absorption and peak shear load in ACC structures under impact loads

    表  1  混凝土试块参数

    Table  1.   Parameters of concrete specimens

    密度/
    (kg·m−3)
    弹性模量/
    GPa
    泊松比 剪胀角/° 内聚力/
    MPa
    抗压强度/
    MPa
    2400 38.5 0.2 38 1.0 55
    下载: 导出CSV

    表  2  加载速率剪切试验方案

    Table  2.   Shear testing protocol under varied loading rates

    结构类型加载速率/(mm·min−1)预应力/kN索径/mm长度/mm
    锚索2~4020017.81400
    ACC2~4020017.81400
    下载: 导出CSV

    表  3  锚索与ACC结构在5种不同加载速率条件下的峰值荷载与破断位移

    Table  3.   Peak load and failure displacement of anchor cables and ACC structures under five loading rate conditions

    加载速率/(mm·min−1)结构类型峰值剪切荷载/kN峰值轴向荷载/kN破断位移/mm
    2锚索435.18304.1983.21
    ACC654.12330.2181.71
    10锚索331.62305.3653.79
    ACC609.81328.3368.36
    20锚索314.43300.1249.35
    ACC511.34313.9268.87
    30锚索329.08295.6145.46
    ACC560.77322.6670.10
    40锚索373.29311.5258.73
    ACC655.27332.0683.19
    下载: 导出CSV

    表  4  锚索与ACC结构的抗剪性能相关参数

    Table  4.   Comparative parameters of shear performance between anchor cables and acc structures

    加载速率/(mm·min−1)结构类型$ {T}_{max}^{*} $$ P $/%$ {\eta }_{c} $/%
    2锚索0.6050.3133.47
    ACC0.89
    10锚索0.4583.8945.62
    ACC0.84
    20锚索0.4362.6238.51
    ACC0.70
    30锚索0.4570.4141.32
    ACC0.77
    40锚索0.5175.5443.03
    ACC0.90
    下载: 导出CSV

    表  5  锚索参数

    Table  5.   Parameters of the anchor cable

    密度/
    (kg·m−3)
    弹性模量/
    GPa
    屈服应力/
    MPa
    泊松比 截面积/
    mm2
    直径/
    mm
    7800 208.4 1662 0.31 193.98 17.8
    下载: 导出CSV

    表  6  C形管参数

    Table  6.   Parameters of C- shaped tube

    密度/
    (kg·m−3)
    弹性模量/
    GPa
    屈服应力/
    MPa
    泊松比 外径/
    mm
    内径/
    mm
    7850 210 345 0.3 28 24
    下载: 导出CSV
  • [1] 陈昊祥, 王明洋, 李杰. 深部岩体变形破坏的特征能量因子与应用 [J]. 爆炸与冲击, 2019, 39(8): 081103. DOI: 10.11883/bzycj-2019-0191.

    CHEN H X, WANG M Y, LI J. A characteristic energy factor for deformation and failure of deep rock masses and its application [J]. Explosion and Shock Waves, 2019, 39(8): 081103. DOI: 10.11883/bzycj-2019-0191.
    [2] 王明洋, 徐天涵, 邓树新, 等. 深部硐室长期稳定性的两个力学问题 [J]. 爆炸与冲击, 2021, 41(7): 071101. DOI: 10.11883/bzycj-2021-0023.

    WANG M Y, XU T H, DENG S X, et al. Mechanical problems for the long-term stability of rocks surrounding deep level underground tunnels [J]. Explosion and Shock Waves, 2021, 41(7): 071101. DOI: 10.11883/bzycj-2021-0023.
    [3] MENG X, REN Q Y, XIAO S Q, et al. Numerical simulation of mechanical characteristics and tension-torsion coupling effect of tension-type anchor cable [J]. Engineering Computations, 2023, 40(9/10): 2730–2753. DOI: 10.1108/EC-08-2023-0440.
    [4] 丁瑜, 王全才, 何思明. 拉力分散型锚索锚固段荷载传递机制 [J]. 岩土力学, 2010, 31(2): 599–603. DOI: 10.16285/j.rsm.2010.02.026.

    DING Y, WANG Q C, HE S M. Loading transfer mechanism of dispersion-type tensile cables along anchoring section [J]. Rock and Soil Mechanics, 2010, 31(2): 599–603. DOI: 10.16285/j.rsm.2010.02.026.
    [5] 沈俊, 顾金才, 张向阳, 等. 拉力型和压力型自由式锚索现场拉拔试验研究 [J]. 岩石力学与工程学报, 2012, 31(S1): 3291–3297. DOI: 10.3969/j.issn.1000-6915.2012.z1.094.

    SHEN J, GU J C, ZHANG X Y, et al. Field pull-out test research on tension and pressrue unbonded anchor cables [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3291–3297. DOI: 10.3969/j.issn.1000-6915.2012.z1.094.
    [6] JALALIFAR H, AZIZ N, HADI M. The effect of surface profile, rock strength and pretension load on bending behaviour of fully grouted bolts [J]. Geotechnical & Geological Engineering, 2006, 24(5): 1203–1227. DOI: 10.1007/s10706-005-1340-6.
    [7] AZIZ N, HOSSEIN J, HADI M S N. The effect of resin thickness on bolt-grout-concrete interaction in shear [C]//Coal 2005: 3–9.
    [8] FERRERO A M. The shear strength of reinforced rock joints [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(6): 595–605. DOI: 10.1016/0148-9062(95)00002-X.
    [9] GORIS J M, MARTIN L A, CURTIN R P. Shear behaviour of cable bolt supports in horizontal bedded deposits [R]. Cim Bulletin, 1996, 89: 124-128. , 1996.
    [10] GRASSELLI G. 3D Behaviour of bolted rock joints: experimental and numerical study [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(1): 13–24. DOI: 10.1016/j.ijrmms.2004.06.003.
    [11] JALALIFAR H, AZIZ N. Experimental and 3D numerical simulation of reinforced shear joints [J]. Rock Mechanics and Rock Engineering, 2010, 43(1): 95–103. DOI: 10.1007/s00603-009-0031-7.
    [12] 单仁亮, 陶宇, 孔祥松, 等. 能承担横向剪切力的锚管索支护结构: CN201410206614.5 [P]. 2016-03-02.

    SHAN R L, TAO Y, KONG X S, et al. Composite support method of longitudinal beam in coal roadway: CN201410206614.5 [P]. 2016-03-02.
    [13] 单仁亮, 仝潇, 黄鹏程, 等. 管索组合结构及其力学性能研究 [J]. 岩土力学, 2022, 43(3): 602–614. DOI: 10.16285/j.rsm.2021.0764.

    SHAN R L, TONG X, HUANG P C, et al. Research on the anchor cable combined with the c-shaped tube and the mechanical properties [J]. Rock and Soil Mechanics, 2022, 43(3): 602–614. DOI: 10.16285/j.rsm.2021.0764.
    [14] SHAN R L, XIAO S C, LIANG J Q, et al. Study on the double-sided shear test and three-dimensional numerical simulation of anchor cable with C-shaped tube [J]. Structures, 2024, 61: 106065. DOI: 10.1016/j.istruc.2024.106065.
    [15] 单仁亮, 仝潇, 代卫林, 等. 管索组合结构支护新技术及其在深部大变形巷道应用研究 [J]. 矿业科学学报, 2023, 8(1): 39–49. DOI: 10.19606/j.cnki.jmst.2023.01.004.

    SHAN R L, TONG X, DAI W L, et al. Research on the new technology of anchor cable with C-shaped tube support and its application in deep large deformation roadway [J]. Journal of Mining Science and Technology, 2023, 8(1): 39–49. DOI: 10.19606/j.cnki.jmst.2023.01.004.
    [16] 刘海峰, 宁建国. 冲击荷载作用下混凝土材料的细观本构模型 [J]. 爆炸与冲击, 2009, 29(3): 261–267. DOI: 10.11883/1001-1455(2009)03-0261-07.

    LIU H F, NING J G. A meso-mechanical constitutive model of concrete subjected to impact loading [J]. Explosion and Shock Waves, 2009, 29(3): 261–267. DOI: 10.11883/1001-1455(2009)03-0261-07.
    [17] 张永杰, 陈力, 谢普初, 等. ABAQUS混凝土损伤塑性模型中损伤因子的率相关性及实现方法 [J]. 爆炸与冲击, 2022, 42(10): 103103. DOI: 10.11883/bzycj-2021-0464.

    ZHANG Y J, CHEN L, XIE P C, et al. Rate correlation of the ABAQUS damage parameter in the concrete damage plasticity model and its realization method [J]. Explosion and Shock Waves, 2022, 42(10): 103103. DOI: 10.11883/bzycj-2021-0464.
    [18] 赵武超, 钱江, 张文娜. 冲击荷载下钢筋混凝土梁的性能及损伤评估 [J]. 爆炸与冲击, 2019, 39(1): 015102. DOI: 10.11883/bzycj-2017-0288.

    ZHAO W C, QIAN J, ZHANG W N. Performance and damage evaluation of RC beams under impact loading [J]. Explosion and Shock Waves, 2019, 39(1): 015102. DOI: 10.11883/bzycj-2017-0288.
    [19] 张书鹏. 深部穿层巷道管索组合结构支护理论与技术研究 [D]. 北京: 中国矿业大学(北京), 2022: 54–56. DOI: 10.27624/d.cnki.gzkbu.2022.000132.

    ZHANG S P. Study on the theory and technology of Anchor Cable with C-shaped tube structure support in deep roadway [D]. Beijing: China University of Mining & Technology (Beijing), 2022: 54–56. DOI: 10.27624/d.cnki.gzkbu.2022.000132.
    [20] PELLET F, EGGER P. Analytical model for the mechanical behaviour of bolted rock joints subjected to shearing [J]. Rock Mechanics and Rock Engineering, 1996, 29(2): 73–97. DOI: 10.1007/BF01079755.
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  22
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-23
  • 修回日期:  2025-01-06
  • 网络出版日期:  2025-01-07

目录

    /

    返回文章
    返回