• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

非冲击点火质量惯性约束装药燃烧反应演化模型研究

潘传鱼 黄熙龙 李平 李涛 傅华 尚海林

潘传鱼, 黄熙龙, 李平, 李涛, 傅华, 尚海林. 非冲击点火质量惯性约束装药燃烧反应演化模型研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0404
引用本文: 潘传鱼, 黄熙龙, 李平, 李涛, 傅华, 尚海林. 非冲击点火质量惯性约束装药燃烧反应演化模型研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0404
PAN Chuanyu, HUANG Xilong, LI Ping, LI Tao, FU Hua, SHANG Hailin. Investigation on combustion reaction evolution model of charge with mass inertia constraint via non-shock ignition[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0404
Citation: PAN Chuanyu, HUANG Xilong, LI Ping, LI Tao, FU Hua, SHANG Hailin. Investigation on combustion reaction evolution model of charge with mass inertia constraint via non-shock ignition[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0404

非冲击点火质量惯性约束装药燃烧反应演化模型研究

doi: 10.11883/bzycj-2024-0404
基金项目: 国家自然科学基金(12402445); 国防基础稳定支持项目(JCKYS2024212108);全国重点实验室基金 (2024CXPTGFJJ06404)
详细信息
    作者简介:

    潘传鱼(1995- ),男,博士,助理研究员,ustcpcy@mail.ustc.edu.cn

    通讯作者:

    黄熙龙(1988-  ),男,博士,副研究员,huangxl7@foxmail.com

  • 中图分类号: O381

Investigation on combustion reaction evolution model of charge with mass inertia constraint via non-shock ignition

  • 摘要: 为了发展基于结构装药非冲击点火反应演化的物理机制的工程模型、描述反应演化过程并量化表征反应烈度,本文基于装药反应裂纹扩展的主控机制,考虑了空腔膨胀体积,以断裂韧性与反应压力为主要参量,构建了约束装药燃烧反应演化模型,可描述装药燃烧过程中燃烧气体产物增压和壳体结构约束强度的变化过程。利用质量惯性约束作用下的PBX-3炸药燃烧反应演化实验,验证了约束装药反应燃烧演化模型的可靠性。分析结果表明:模型计算获得的反应增压历程与实验中的反应压力增长趋势(通过质量块运动速度历程推算)大致吻合,考虑结构泄压效应的模型能够反映压力增长历程中燃烧产气增压与泄气释压竞争的物理机制,压力增长趋势随泄压面积系数的变化关系符合机理分析预期。
  • 图  1  受约束炸药燃烧裂纹网络示意图

    Figure  1.  Schematic of a burning crack network in confined explosives

    图  2  典型装药的质量惯性约束效应实验装置示意图

    Figure  2.  Experimental setup for charge with mass inertia constraint.

    图  3  不同工程参数组合下的PBX-3炸药燃烧裂纹表面积增长

    Figure  3.  Growth of burning crack area of PBX-3 under different combinations of engineering parameters.

    图  4  质量块运动的计算与实验结果对比

    Figure  4.  Comparison between calculated and experimental motion results of mass

    图  5  压力的实验与计算结果对比

    Figure  5.  Comparison between calculated and experimental results

    图  6  考虑泄压结构的计算反应压力-时间分布曲线

    Figure  6.  Calculated reaction pressure-time curve considering venting

    表  1  约束柱壳参数数值

    Table  1.   Parameter values of confined cylindrical shell

    R1/mm R2/mm μ E/GPa σs /MPa pe /MPa ps /MPa I/GPa
    25 75 0.3 200 370 189.9 469.4 146.34
     注:R1为内径,R2为外径,μ为泊松比,E为弹性模量,σs/为屈服强度,pe为弹性极限强度,ps为塑性极限强度,I为约束体积模量。
    下载: 导出CSV

    表  2  PBX-3炸药基本参数

    Table  2.   Parameter values of PBX-3 Explosives

    B/GPa ρe0/(g·cm−3) Ve0/cm3 me0/kg Mg/(g·mol−1) ω R/(J·mol−1·K−1) T/K
    10.11.84598.1750.18127.218.314 4724000
    Rp/(m2·s−2·K−1)l0/μmKIC/(MPa·K1/2)pIG/MPaSmax/m2ηα/(mm·MPaβ·s−1)β
    305.68900.516.53311.630.92
     注:B为体积模量;ρe0为初始密度;Ve0为初始体积;me0为初始质量;Mg为产物气体摩尔质量;ω为气体产物转化率;R为摩尔气体常数;T为气体产物温度;l0为颗粒平均粒径;KIC为断裂韧度;pIG为初始点火压力;Smax为最大饱和燃烧面积;η为变形几何参数;α为炸药燃烧系数,通过燃速实验标定;β为燃烧指数,通过燃速实验标定。
    下载: 导出CSV
  • [1] PICART D, BOUTON E. Non shock ignition of HMX based high explosives: thermo mechanical numerical study [C]// 14th International Detonation Symposium, 2010: 717–724.
    [2] ASAY B W. Shock Wave Science and Technology Reference Library [M]. Berlin, Heidelberg: Springer, 2010: 11–488. DOI: 10.1007/978-3-540-87953-4.
    [3] 黄辉, 黄亨建, 王杰, 等. 安全弹药的发展思路与技术途径 [J]. 含能材料, 2023, 31(10): 1079–1087. DOI: 10.11943/CJEM2023165.

    HUANG H, HUANG H J, WANG J, et al. Development ideas and technical approaches for safety ammunition [J]. Chinese Journal of Energetic Materials, 2023, 31(10): 1079–1087. DOI: 10.11943/CJEM2023165.
    [4] GRIFFITHS S K, NILSON R H. Similarity analysis of fracture growth and flame spread in deformable solid propellants [J]. Combustion and Flame, 1992, 88(3/4): 369–383. DOI: 10.1016/0010-2180(92)90040-V.
    [5] BELYAEV A F, BOBOLEV V K, KOROTKOV A I, et al. Transition from deflagration to detonation in condensed phases[M], translation. Orginial work published 1973, 1975.
    [6] JACKSON S I, HILL L G. Runaway reaction due to gas-dynamic choking in solid explosive containing a single crack [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2307–2313. DOI: 10.1016/j.proci.2008.05.089.
    [7] 胡海波, 傅华, 李涛, 等. 压装密实炸药装药非冲击点火反应传播与烈度演化实验研究进展 [J]. 爆炸与冲击, 2020, 40(1): 1–13. DOI: 10.11883/bzycj-2019-0346.

    HU H B, FU H, LI T, et al. Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement [J]. Explosion and Shock Waves, 2020, 40(1): 1–13. DOI: 10.11883/bzycj-2019-0346.
    [8] BERGHOUT H L, SON S F, ASAY B W. Convective burning in gaps of PBX 9501 [J]. Proceedings of the Combustion Institute, 2000, 28(1): 911–917. DOI: 10.1016/S0082-0784(00)80297-0.
    [9] BERGHOUT H L, SON S F, SKIDMORE C B, et al. Combustion of damaged PBX 9501 explosive [J]. Thermochimica Acta, 2002, 384(1/2): 261–277. DOI: 10.1016/S0040-6031(01)00802-4.
    [10] BERGHOUT H L, SON S F, HILL L G, et al. Flame spread through cracks of PBX 9501 (a composite octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine-based explosive) [J]. Journal of Applied Physics, 2006, 99(11): 114901. DOI: 10.1063/1.2196219.
    [11] 尚海林, 杨洁, 胡秋实, 等. 炸药裂缝中的对流燃烧现象实验研究 [J]. 兵工学报, 2019, 40(1): 99–106. DOI: 10.3969/j.issn.1000-1093.2019.01.012.

    SHANG H L, YANG J, HU Q S, et al. Experimental research on convective burning in explosive cracks [J]. Acta Armamentarii, 2019, 40(1): 99–106. DOI: 10.3969/j.issn.1000-1093.2019.01.012.
    [12] 尚海林, 杨洁, 李涛, 等. 约束HMX基PBX炸药裂缝中燃烧演化实验 [J]. 含能材料, 2019, 27(12): 1056–1061. DOI: 10.11943/CJEM2018339.

    SHANG H L, YANG J, LI T, et al. Experimental study on burning evolution in confined HMX-based PBX cracks [J]. Chinese Journal of Energetic Materials, 2019, 27(12): 1056–1061. DOI: 10.11943/CJEM2018339.
    [13] 尚海林, 马骁, 程赋, 等. 炸药燃烧产物驱动裂纹动态扩展耦合特性 [J]. 含能材料, 2019, 27(10): 819–823. DOI: 10.11943/CJEM2019136.

    SHANG H L, MA X, CHENG F, et al. Coupling properties of crack penetration driven by explosive burning products [J]. Chinese Journal of Energetic Materials, 2019, 27(10): 819–823. DOI: 10.11943/CJEM2019136.
    [14] SMILOWITZ L, HENSON B F, ROMERO J J, et al. Direct observation of the phenomenology of a solid thermal explosion using time-resolved proton radiography [J]. Physical Review Letters, 2008, 100(22): 228301. DOI: 10.1103/PhysRevLett.100.228301.
    [15] SMILOWITZ L, HENSON B F, ROMERO J J, et al. Thermal decomposition of energetic materials viewed via dynamic x-ray radiography [J]. Applied Physics Letters, 2014, 104(2): 024107. DOI: 10.1063/1.4858965.
    [16] SMILOWITZ L, HENSON B F, OSCHWALD D, et al. Internal sub-sonic burning during an explosion viewed via dynamic X-ray radiography [J]. Applied Physics Letters, 2017, 111(18): 184103. DOI: 10.1063/1.5004424.
    [17] SMILOWITZ L, HENSON B F, ROMERO J J, et al. The evolution of solid density within a thermal explosion. I. proton radiography of pre-ignition expansion, material motion, and chemical decomposition [J]. Journal of Applied Physics, 2012, 111(10): 103515. DOI: 10.1063/1.4711071.
    [18] SMILOWITZ L, HENSON B F, ROMERO J J, et al. The evolution of solid density within a thermal explosion II. dynamic proton radiography of cracking and solid consumption by burning [J]. Journal of Applied Physics, 2012, 111(10): 103516. DOI: 10.1063/1.4711072.
    [19] SWANSON S R. Application of Schapery's theory of viscoelastic fracture to solid propellant [J]. Journal of Spacecraft and Rockets, 1976, 13(9): 528–533. DOI: 10.2514/3.27925.
    [20] BENNETT J G, HABERMAN K S, JOHNSON J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(12): 2303–2322. DOI: 10.1016/S0022-5096(98)00011-8.
    [21] HILL L G. Burning crack networks and combustion bootstrapping in cookoff explosions [J]. AIP Conference Proceedings, 2006, 845(1): 531–534. DOI: 10.1063/1.2263377.
    [22] 段卓平, 白志玲, 白孟璟, 等. 强约束固体炸药燃烧裂纹网络反应演化模型 [J]. 兵工学报, 2021, 42(11): 2291–2299. DOI: 10.3969/j.issn.1000-1093.2021.11.001.

    DUAN Z P, BAI Z L, BAI M J, et al. Burning-crack networks model for combustion reaction growth of solid explosives with strong confinement [J]. Acta Armamentarii, 2021, 42(11): 2291–2299. DOI: 10.3969/j.issn.1000-1093.2021.11.001.
    [23] 白志玲, 段卓平, 李治, 等. 热刺激约束DNAN基不敏感熔铸炸药装药点火后反应演化调控模型 [J]. 含能材料, 2023, 31(10): 1004–1012. DOI: 10.11943/CJEM2023160.

    BAI Z L, DUAN Z P, LI Z, et al. Regulation model for reaction evolution of confined DNAN-based cast explosives after ignition under thermal stimulation [J]. Chinese Journal of Energetic Materials, 2023, 31(10): 1004–1012. DOI: 10.11943/CJEM2023160.
    [24] GRAHAM K J. Mitigation of fuel fire threat to large rocket motors by venting [C]//Insensitive Munitions & Energetic Materials Symposium Munich. Munich: Air Force Research Laboratory, 2010.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  414
  • HTML全文浏览量:  44
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-24
  • 修回日期:  2024-12-04
  • 网络出版日期:  2024-12-04

目录

    /

    返回文章
    返回