• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

反射爆炸应力波作用下动静裂纹的贯通机理

周星源 岳中文 金庆雨 任猛 徐胜男 刘伟 王煦 薛克军

周星源, 岳中文, 金庆雨, 任猛, 徐胜男, 刘伟, 王煦, 薛克军. 反射爆炸应力波作用下动静裂纹的贯通机理[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0409
引用本文: 周星源, 岳中文, 金庆雨, 任猛, 徐胜男, 刘伟, 王煦, 薛克军. 反射爆炸应力波作用下动静裂纹的贯通机理[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0409
ZHOU Xingyuan, YUE Zhongwen, JIN Qingyu, REN Meng, XU Shengnan, LIU Wei, WANG Xu, XUE Kejun. Propagation mechanism of stationary and dynamic cracks under reflected explosive stress waves[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0409
Citation: ZHOU Xingyuan, YUE Zhongwen, JIN Qingyu, REN Meng, XU Shengnan, LIU Wei, WANG Xu, XUE Kejun. Propagation mechanism of stationary and dynamic cracks under reflected explosive stress waves[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0409

反射爆炸应力波作用下动静裂纹的贯通机理

doi: 10.11883/bzycj-2024-0409
基金项目: 国家自然科学基金(52174094,51974318)
详细信息
    作者简介:

    周星源(1996- ),男,博士,zhouxingyuan19@mails.ucas.ac.cn

    通讯作者:

    岳中文(1975- ),男,博士,教授,zwyue75@163.com

  • 中图分类号: O383.2

Propagation mechanism of stationary and dynamic cracks under reflected explosive stress waves

  • 摘要: 采用动光弹的实验方法,研究了反射爆炸应力波作用下动静裂纹的作用关系及贯通后瞬态卸荷现象的产生机制。结果表明:P波的反射波前沿为拉伸波,后沿为压缩波,其前沿拉伸波向裂纹尖端施加拉伸应力增大动态强度因子,促进裂纹的扩展,而后沿压缩波向裂纹尖端施加压缩应力,降低应力强度因子,抑制裂纹的扩展。P波反射后转换出的S波会导致裂纹扩展方向的偏转和速度的变化,呈现波浪状不稳定扩展。爆炸裂纹与静止裂纹贯通后,裂纹面附近储存的弹性能以卸载波的形式向外快速释放,卸载波在静止裂纹尖端出现应力集中,诱发静止裂纹尖端次生裂纹的产生。
  • 图  2  实验系统示意图

    Figure  2.  Schematic diagram of experimental system

    图  1  平面问题中裂纹尖端区域的应力单元

    Figure  1.  Stress element in crack tip region of plane problem

    图  3  试件模型示意图

    Figure  3.  Specimen model diagram

    图  4  爆炸应力波传播过程的光弹等差条纹系列

    Figure  4.  Photoelastic fringes of single-hole blasting process

    图  5  爆生主裂纹扩展过程的光弹等差条纹系列图片

    Figure  5.  Photoelastic fringes of blast-induced main crack propagation

    图  6  裂纹扩展速度和加速度变化曲线

    Figure  6.  History curves of velocity and acceleration of crack propagation

    图  7  反射爆炸应力波作用下应力强度因子和非奇异应力参数随时间的变化

    Figure  7.  Changes of stress intensity factors and non-singular stresses with time under the action of reflected explosion stress wave

    图  8  爆炸裂纹与预制裂纹贯通后弹性能快速释放的光弹条纹系列

    Figure  8.  A series of photoelastic stripes with rapid release of elastic energy after penetration of blast-induced and prefabricated cracks

    图  9  裂纹扰动S波马赫锥

    Figure  9.  S-wave Mach cone of crack disturbed

  • [1] 杨仁树, 李成孝, 陈骏, 等. 我国煤矿岩巷爆破掘进发展历程与新技术研究进展 [J]. 煤炭科学技术, 2023, 51(1): 224–241. DOI: 10.13199/j.cnki.cst.2022-1804.

    YANG R S, LI C X, CHEN J, et al. Development history and new technology research progress of rock roadway blasting excavation in coal mines in China [J]. Coal Science and Technology, 2023, 51(1): 224–241. DOI: 10.13199/j.cnki.cst.2022-1804.
    [2] 卢文波, 周创兵, 陈明, 等. 开挖卸荷的瞬态特性研究 [J]. 岩石力学与工程学报, 2008, 27(11): 2184–2192. DOI: 10.3321/j.issn:1000-6915.2008.11.003.

    LU W B , ZHOU C B, CHEN M, et al. Research on transient characteristics of excavation unloading [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2184–2192. DOI: 10.3321/j.issn:1000-6915.2008.11.003.
    [3] IRWIN G R. Analysis of stresses and strains near the end of a crack traversing a plate [J]. Journal of Applied Mechanics, 1957, 24(3): 361–364. DOI: 10.1115/1.4011547.
    [4] FREUND L B. Crack propagation in an elastic solid subjected to general loading: Ⅲ. stress wave loading [J]. Journal of the Mechanics and Physics of Solids, 1973, 21(2): 47–61. DOI: 10.1016/0022-5096(73)90029-X.
    [5] 王明洋, 钱七虎. 爆炸应力波通过节理裂隙带的衰减规律 [J]. 岩土工程学报, 1995, 17(2): 42–46. DOI: 10.1007/BF02943584.

    WANG M Y, QIAN Q H. Attenuation law of explosive wave propagation in cracks [J]. Chinese Journal of Geotechnical Engineering, 1995, 17(2): 42–46. DOI: 10.1007/BF02943584.
    [6] ROSSMANITH H P, SHUKLA A. Dynamic photoelastic investigation of interaction of stress waves with running cracks: a photoelastic study of interaction of stress waves with running cracks is conducted to investigate the influence of crack-wave interaction on crack-propagation behavior and crack branching [J]. Experimental Mechanics, 1981, 21(11): 415–422. DOI: 10.1007/BF02327143.
    [7] ROSSMANITH H P, SHUKLA A. Photoelastic investigation of stress wave diffraction about stationary crack-tips [J]. Journal of the Mechanics and Physics of Solids, 1981, 29(5/6): 397–412. DOI: 10.1016/0022-5096(81)90036-3.
    [8] THEOCARIS P S. Secondary afterfailure fractures due to transversely reflected waves [J]. Engineering Fracture Mechanics, 1981, 15(3/4): 283–290. DOI: 10.1016/0013-7944(81)90061-8.
    [9] 朱振海. 爆炸应力波与径向裂纹相互作用的动光弹研究 [J]. 工程兵工程学院学报, 1987(2): 80–86, 79. DOI: CNKI:SUN:JFJL.0.1987-02-011.

    ZHU Z H. Study on the interaction between explosive stress waves and radial cracks [J]. Journal of the Engineering Corps Engineering College., 1987(2): 80–86, 79. DOI: CNKI:SUN:JFJL.0.1987-02-011.
    [10] DALLY J W. Dynamic photoelastic studies of fracture: dynamic photoelasticity is applied to characterize the behavior of cracks propagating in polymers and a metal with an ⇘-K relation [J]. Experimental Mechanics, 1979, 19(10): 349–361. DOI: 10.1007/BF02324250.
    [11] FREUND L B. Dynamic fracture mechanics [M]. Cambridge: Cambridge University Press, 1990. DOI: 10.1017/CBO9780511546761.
    [12] DALLY J W, BARKER D B. Dynamic measurements of initiation toughness at high loading rates [J]. Experimental Mechanics, 1988, 28(3): 298–303. DOI: 10.1007/BF02329026.
    [13] XU P, YANG R S, GUO Y, et al. Investigation of the effect of the blast waves on the opposite propagating crack [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 144: 104818. DOI: 10.1016/j.ijrmms.2021.104818.
    [14] 岳中文, 杨仁树, 郭东明, 等. 爆炸应力波作用下缺陷介质裂纹扩展的动态分析 [J]. 岩土力学, 2009, 30(4): 949–954. DOI: 10.16285/j.rsm.2009.04.004.

    YUE Z W, YANG R S, GUO D M, et al. Dynamic analysis of crack propagation in media containing flaws under the explosive stress wave [J]. Rock and Soil Mechanics, 2009, 30(4): 949–954. DOI: 10.16285/j.rsm.2009.04.004.
    [15] 岳中文, 杨仁树, 董聚才, 等. 爆炸载荷下板条边界斜裂纹的动态扩展行为 [J]. 爆炸与冲击, 2011, 31(1): 75–80. DOI: 10.11883/1001-1455(2011)01-0075-06.

    YUE Z W, YANG R S, DONG J C, et al. Dynamic propagation behaviors of an oblique edge crack in material under blast loading [J]. Explosion and Shock Waves, 2011, 31(1): 75–80. DOI: 10.11883/1001-1455(2011)01-0075-06.
    [16] QIU P, YUE Z W, YANG R S, et al. Modified mixed-mode caustics interpretation to study a running crack subjected to obliquely incident blast stress waves [J]. International Journal of Impact Engineering, 2021, 150: 103821. DOI: 10.1016/j.ijimpeng.2021.103821.
    [17] ZHANG J Z, HUANG H W, ZHANG D M, et al. Experimental study of the coupling effect on segmental shield tunnel lining under surcharge loading and excavation unloading [J]. Tunnelling and Underground Space Technology, 2023, 140: 105199. DOI: 10.1016/j.tust.2023.105199.
    [18] 范勇, 卢文波, 杨建华, 等. 深埋洞室开挖瞬态卸荷诱发振动的衰减规律 [J]. 岩土力学, 2015, 36(2): 541–549. DOI: 10.16285/j.rsm.2015.02.033.

    FAN Y, LU W B, YANG J H, et al. Attenuation law of vibration induced by transient unloading during excavation of deep caverns [J]. Rock and Soil Mechanics, 2015, 36(2): 541–549. DOI: 10.16285/j.rsm.2015.02.033.
    [19] 陈文涛, 宋春明, 程婷婷, 等. 基于相似材料的岩爆模型实验及其能量释放机制 [J]. 实验力学, 2012, 27(5): 630–636.

    CHEN W T, SONG C M, CHENG T T, et al. On the rock burst model experiment based on similar material and the energy releasing mechanism [J]. Experimental Mechanics, 2012, 27(5): 630–636.
    [20] 杨善元. 岩石爆破动力学基础 [M]. 北京: 煤炭工业出版社, 1993.
    [21] 卢文波, 金李, 陈明, 等. 节理岩体爆破开挖过程的动态卸载松动机理研究 [J]. 岩石力学与工程学报, 2005, 24(s1): 4653–4657.

    LU W B, JIN L, CHEN M, et al. Study on the mechanism of jointed rock mass loosing induced by dynamic unloading of initial stress during rock blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(s1): 4653–4657.
    [22] 祝启虎. 地应力瞬态卸荷对围岩损伤特征的影响[D]. 武汉: 武汉大学, 2013.
    [23] 李峰, 张亚光, 方书昊, 等. 冲击载荷作用下弹、塑性组合煤体动态损伤特性研究 [J]. 采矿与安全工程学报, 2016, 33(6): 1096–1102,1109. DOI: 10.13545/j.cnki.jmse.2016.06.020.

    LI F, ZHANG Y G, FANG S H, et al. Dynamic damage characteristics of elastic and plastic combination coal under impact loading [J]. Journal of Mining and Safety Engineering, 2016, 33(6): 1096–1102,1109. DOI: 10.13545/j.cnki.jmse.2016.06.020.
    [24] DALLY J W. An introduction to dynamic photoelasticity [J]. Experimental Mechanics, 1979, 20: 409–416. DOI: 10.1007/BF02328680.
    [25] 杨仁树, 陈程, 岳中文, 等. 正入射爆炸应力波与运动裂纹作用的动态光弹性实验研究 [J]. 煤炭学报, 2018, 43(1): 87–94. DOI: 10.13225/j.cnki.jccs.2017.0353.

    YANG R S, CHEN C, YUE Z W, et al. Dynamic photoelastic investigation of interaction of normal incidence blasting stress waves with running cracks [J]. Journal of China Coal Society, 2018, 43(1): 87–94. DOI: 10.13225/j.cnki.jccs.2017.0353.
    [26] 雷振坤. 结构分析数字光测力学 [M]. 大连: 大连理工大学出版社, 2012.

    LEI Z K. Digital photomechanics for structural analysis [M]. Dalian: Dalian University of Technology Press, 2012.
    [27] BRADLEY W B, KOBAYASHI A S. An investigation of propagating cracks by dynamic photoelasticity: a program was undertaken to provide experimentally an improved understanding of the elastic fields surrounding dynamic cracks and, in particular, stress fields surrounding arresting dynamic cracks [J]. Experimental Mechanics, 1970, 10(3): 106–113. DOI: 10.1007/BF02325114.
    [28] SCHROEDL M A, SMITH C W. Local stresses near deep surface flaws under cylindrical bending fields [M]//KAUFMAN J G, SWEDLOW J L, CORTEN H T, et al. Progress in Flaw Growth and Fracture Toughness Testing. Philadelphia: ASTM International, 1973: 45-63. DOI: 10.1520/STP49636S.
    [29] ETHERIDGE J M, DALLY J W. A critical review of methods for determining stress-intensity factors from isochromatic fringes: three two-parameter methods of fracture analysis for determining the stress-intensity factor from photoelastic isochromatic-fringe data are critically reviewed by the authors [J]. Experimental Mechanics, 1977, 17(7): 248–254. DOI: 10.1007/BF02324838.
    [30] IRWIN G R, DALLY J W, KOBATSHI T, et al. On the determination of the å-K relationship for birefringent polymers: procedures for determining the å-K relationship from isochromatic-fringe loops are discussed: a correction factor to account for dynamic effects due to crack velocity is introduced [J]. Experimental Mechanics, 1979, 19(4): 121–128. DOI: 10.1007/BF02324224.
    [31] SMITH D G, SMITH C W. Photoelastic determination of mixed mode stress intensity factors [J]. Engineering Fracture Mechanics, 1972, 4(2): 357–366. DOI: 10.1016/0013-7944(72)90050-1.
    [32] PENG L, YUE Z, XU S, et al. Experimental study on the influence of biaxial confining pressure on dynamic cracks and its interaction with blasting stress wave [J]. Theoretical and Applied Fracture Mechanics, 2023, 123: 103719. DOI: 10.1016/j.tafmec.2022.103719.
    [33] 岳中文, 王煦, 杨仁树, 等. 一种动光弹模型材料的制作方法及其应用 [J]. 实验力学, 2017, 32(2): 179–188. DOI: 10.7520/1001-4888-16-148.

    YUE Z W, WANG X, YANG R S, et al. A method of dynamic photoelastic experimental model material and its application [J]. Journal of Experimental Mechanics, 2017, 32(2): 179–188. DOI: 10.7520/1001-4888-16-148.
    [34] YUE Z, QIU P, YANG R, et al. Experimental study on a Mach cone and trailing Rayleigh waves in a stress wave chasing running crack problem [J]. Theoretical and Applied Fracture Mechanics, 2019, 104: 102371. DOI: 10.1016/j.tafmec.2019.102371.
    [35] 杨善元. 岩石爆破动力学基础 [M]. 北京: 煤炭工业出版社, 1993.
    [36] 杨仁树, 许鹏, 岳中文, 等. 圆孔缺陷与Ⅰ型运动裂纹相互作用的试验研究 [J]. 岩土力学, 2016, 37(6): 1597–1602. DOI: 10.16285/j.rsm.2016.06.009.

    YANG R S, XU P, YUE Z W, et al. Laboratory study of interaction between a circular hole defect and mode I moving crack [J]. Rock and Soil Mechanics, 2016, 37(6): 1597–1602. DOI: 10.16285/j.rsm.2016.06.009.
    [37] YANG R, XU P, YUE Z, et al. Dynamic fracture analysis of crack-defect interaction for mode I running crack using digital dynamic caustics method [J]. Engineering Fracture Mechanics, 2016, 161: 63–75. DOI: 10.1016/j.engfracmech.2016.04.042.
    [38] 胡进军, 谢礼立. 地震超剪切破裂研究现状 [J]. 地球科学进展, 2011, 26(1): 39–47. DOI: 10.11867/j.issn.1001-8166.2011.01.0039.

    HU J J, XIE L L. Review of the state-of-the-art researches on earthquake super-shear rupture [J]. Advances in Earth Science, 2011, 26(1): 39–47. DOI: 10.11867/j.issn.1001-8166.2011.01.0039.
    [39] XIA K, ROSAKIS A J, KANAMORI H. Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition [J]. Science, 2004, 303(5665): 1859–1861. DOI: 10.1126/science.1094022.
    [40] 曹文卓, 李夕兵, 周子龙, 等. 高应力硬岩开挖扰动的能量耗散规律 [J]. 中南大学学报(自然科学版), 2014, 45(8): 2759–2767. DOI: CNKI:SUN:ZNGD.0.2014-08-029.

    CAO W Z, LI X B, ZHOU Z L, et al. Energy dissipation of high-stress hard rock with excavation disturbance [J]. Journal of Central South University (Science and Technology), 2014, 45(8): 2759–2767. DOI: CNKI:SUN:ZNGD.0.2014-08-029.
  • 加载中
图(9)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  20
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-28
  • 修回日期:  2025-03-05
  • 网络出版日期:  2025-03-12

目录

    /

    返回文章
    返回