• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

爆炸荷载作用下轻型木框架墙的动力行为分析

黄正 潘钻峰

黄正, 潘钻峰. 爆炸荷载作用下轻型木框架墙的动力行为分析[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0431
引用本文: 黄正, 潘钻峰. 爆炸荷载作用下轻型木框架墙的动力行为分析[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0431
HUANG Zheng, PAN Zuanfeng. Analysis of dynamic behavior of light-frame wood walls under blast loads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0431
Citation: HUANG Zheng, PAN Zuanfeng. Analysis of dynamic behavior of light-frame wood walls under blast loads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0431

爆炸荷载作用下轻型木框架墙的动力行为分析

doi: 10.11883/bzycj-2024-0431
基金项目: 国家自然科学基金(52078368)
详细信息
    作者简介:

    黄 正(1990- ),男,博士,助理研究员,zheng_huang@tongji.edu.cn

    通讯作者:

    潘钻峰(1981- ),男,博士,教授,zfpan@tongji.edu.cn

  • 中图分类号: O383

Analysis of dynamic behavior of light-frame wood walls under blast loads

  • 摘要: 为研究轻型木框架墙的抗爆性能,讨论了爆炸荷载作用下轻型木框架墙的数值建模方法,重点探讨了木立柱-面板钉连接动力放大系数以及木立柱破坏准则;基于部分组合理论,通过引入木立柱和轻型木框架墙的动力放大系数实测结果,给出了钉连接动力放大系数的合理取值;构建了考虑木基结构板正交各向异性、钉连接动力非线性力学行为以及木立柱动力弹塑性特征的轻型木框架墙抗爆分析有限元模型。结果表明,提出的模型能够准确预测爆炸荷载作用下轻型木框架墙的动力响应以及木立柱发生断裂的时间和对应的峰值位移。考虑了不同木立柱的材性差异后,模型预测的木立柱断裂后木框架墙动力响应与破坏模式与试验结果一致。本研究提出的模型可为今后轻型木框架结构的抗爆易损性评估提供模型基础。
  • 图  1  木框架墙激波管试验示意图[8]

    Figure  1.  Schematic diagram of the shock tube tests of wood-frame walls[8]

    图  2  轻型木框架墙激波管试验的数值模型

    Figure  2.  Numerical model for the shock tube tests of light-frame wood walls

    图  3  木立柱-面板钉连接荷载-滑移曲线试验结果[17]

    Figure  3.  Experimental load-slip curves for stud-to-sheathing nail connections[17]

    图  4  引入DIF后木立柱-面板钉连接强轴方向荷载-滑移曲线

    Figure  4.  Load-slip curves of the stud-to-sheathing nail along the strength axis after introducing DIF

    图  5  弹性激波管试验中木立柱跨中侧移试验结果与数值解的对比

    Figure  5.  Comparison of experimental and numerical mid-span displacements of the studs in the elastic shock tube tests

    图  6  墙8-1数值模型给出的钉连接轴向位移时程曲线

    Figure  6.  Time history of axial displacements of nails from the numerical model of wall 8-1

    图  7  不考虑负压作用的墙8-1数值分析结果

    Figure  7.  Numerical results for Wall 8-1 when the negative pressure is neglected

    图  8  第1个正向侧移峰值发生木立柱破坏的木框架墙的试验和数值结果的对比

    Figure  8.  Comparison of experimental and numerical results for the light-frame wood walls of which the studs failed at mid-span upon reaching the first positive displacement peak

    图  9  激波管试验中木框架墙面板的弯曲应力计算结果

    Figure  9.  Numerical bending stress of the sheathings of the light-frame wood walls in the shock tube tests

    图  10  轻型木框架墙激波管试验中的OSB面板破坏

    Figure  10.  OSB failure in the shock tube tests of the light-frame wood walls

    图  11  墙19-2激波管试验的有限元分析结果

    Figure  11.  FE results for the shock tube tests of Wall 19-2

    图  12  墙19-2的破坏模式

    Figure  12.  Failure mode of Wall 19-2

    图  13  激波管试验墙8-2的数值模拟结果

    Figure  13.  Numerical results for the shock tube test of Wall 8-2

    图  14  激波管试验墙8-2中的钉拔出现象

    Figure  14.  Nail pullout in the shock tube test of Wall 8-2

    表  1  木框架墙激波管试验参数[8]

    Table  1.   Parameters of shock tube tests of light-frame wood walls[8]

    试件名称 面板 Pmax/kPa I/(kPa·ms) tp/ms dmax/mm tmax/ms 应变率/s−1 Z/(m·kg−1/3)
    墙6-2 11 mm
    OSB
    38.3 403.0 22.0 47 8.9 0.54 9.1
    墙7-1 38.2 384.9 20.1 59 9.4 0.55 9.1
    墙8-1 9.8 25.1 5.1 8 6.2 1.54 25.0
    墙8-2 52.6 163.0 6.2 45 7.9 5.31 7.1
    墙9-1 6.6 76.1 23.1 8 10.6 33.0
    墙16-1 18.5 mm
    胶合板
    11.5 128.1 22.3 11 9.8 0.12 20.0
    墙17-1 12.6 245.7 39.0 13 9.9 0.15 20.0
    墙17-2 40.1 813.12 40.5 51 9.9 0.36 8.9
    墙19-1 11.0 122.2 22.2 11 9.8 0.12 22.5
    墙19-2 42.1 450.4 21.4 56 10.3 0.46 8.5
    墙20-1 12.5 160.3 25.6 16 12.1 0.15 20.0
    下载: 导出CSV

    表  2  木框架墙各组件的材料性能实测值[8]

    Table  2.   Experimental results for the material parameters of the components in the light-frame wood walls[8]

    组件密度/(kg·m−3)MOE/MPafm/MPa
    平均值COV平均值COV平均值COV
    木立柱498.00.0996900.1144.50.23
    OSB685.055500.2428.40.31
    胶合板470.971200.1641.00.28
    下载: 导出CSV

    表  3  激波管试验中木框架墙的弹性响应模拟结果与实测结果的对比

    Table  3.   Comparison of the experimental and numerical results for the elastic response of the light-frame wood walls in the shock tube tests

    试件名称 试验值[8] 模型一 模型二 模型三 模型四
    dmax,test/
    mm
    tmax,test/
    ms
    dmax,FE/
    dmax,test
    tmax,FE/
    tmax,test
    dmax,FE/
    dmax,test
    tmax,FE/
    tmax,test
    dmax,FE/
    dmax,test
    tmax,FE/
    tmax,test
    dmax,FE/
    dmax,test
    tmax,FE/
    tmax,test
    墙8-1 8 6.2 0.89 1.15 0.84 1.12 0.81 1.10 0.63 1.02
    墙9-1 8 10.6 1.35 1.04 1.22 1.00 1.15 0.99 0.82 0.89
    墙16-1 11 9.8 1.37 1.02 1.25 0.97 1.10 0.95 0.72 0.74
    墙17-1 13 9.9 1.20 1.01 1.09 0.96 0.96 0.94 0.63 0.71
    墙19-1 11 9.8 1.35 1.23 1.22 1.19 1.08 1.14 0.70 0.93
    墙20-1 16 12.1 1.14 0.97 1.03 0.92 0.93 0.89 0.58 0.72
    平均值 1.22 1.07 1.11 1.03 1.00 1.00 0.68 0.84
    COV 0.15 0.09 0.14 0.10 0.13 0.10 0.13 0.16
    下载: 导出CSV

    表  4  激波管试验中发生木立柱断裂的木框架墙模拟结果

    Table  4.   Numerical results for the light-frame wood walls with the studs failing in the shock tube tests

    试件名称 试验值[8] 屈服应变×1 屈服应变×2 屈服应变×2.5
    dmax,test/mm tmax,test/ms dmax,FE/dmax,test tmax,FE/tmax,test dmax,FE/dmax,test tmax,FE/tmax,test dmax,FE/dmax,test tmax,FE/tmax,test
    墙6-2 47 8.9 0.74 0.74 1.02 0.94 1.10 1.02
    墙7-1 59 9.4 0.58 0.72 0.81 0.90 0.87 0.97
    墙17-2 51 9.9 0.69 0.71 0.89 1.03 0.93 1.03
    墙19-2 56 10.3 0.63 0.68 0.84 0.93 0.86 1.09
    平均值 0.66 0.71 0.89 0.95 0.94 1.03
    COV 0.10 0.03 0.11 0.06 0.12 0.05
    下载: 导出CSV
  • [1] REITHERMAN R, COBEEN K. Design documentation of woodframe project index buildings: W-29 [R]. Richmond: Consortium of Universities for Research in Earthquake Engineering, 2003.
    [2] 何敏娟, 何桂荣, 梁峰, 等. 中国木结构近20年发展历程 [J]. 建筑结构, 2019, 49(19): 83–90. DOI: 10.19701/j.jzjg.2019.19.010.

    HE M J, HE G R, LIANG F, et al. Development of timber structures in China during recent twenty years [J]. Building Structure, 2019, 49(19): 83–90. DOI: 10.19701/j.jzjg.2019.19.010.
    [3] HUANG Z H, DAI K S, WANG J Z, et al. Investigations of structural damage caused by the fertilizer plant explosion at West, Texas. I: air-blast incident overpressure [J]. Journal of Performance of Constructed Facilities, 2016, 30(4): 04015064. DOI: 10.1061/(asce)cf.1943-5509.0000799.
    [4] 司豆豆, 潘钻峰, 曾滨, 等. 爆炸荷载作用下大跨预应力混凝土框架动力响应分析 [J]. 爆炸与冲击, 2023, 43(11): 112201. DOI: 10.11883/bzycj-2023-0080.

    SI D D, PAN Z F, ZENG B, et al. Analysis of the dynamic response of prestressed concrete frame structures under blast load [J]. Explosion and Shock Waves, 2023, 43(11): 112201. DOI: 10.11883/bzycj-2023-0080.
    [5] 陈能翔, 钟巍, 王澍霏, 等. 远距离爆炸荷载作用下钢框架几何相似律研究 [J]. 爆炸与冲击, 2023, 43(1): 013101. DOI: 10.11883/bzycj-2021-0498.

    CHEN N X, ZHONG W, WANG S F, et al. Study on geometric similarity law of steel frame under a far-field explosion load [J]. Explosion and Shock Waves, 2023, 43(1): 013101. DOI: 10.11883/bzycj-2021-0498.
    [6] Canadian Standards Association. S850-12 Design and assessment of buildings subjected to blast loads [S]. Mississauga: CSA Group, 2012.
    [7] JACQUES E, LLOYD A, BRAIMAH A, et al. Influence of high strain-rates on the dynamic flexural material properties of spruce-pine-fir wood studs [J]. Canadian Journal of Civil Engineering, 2014, 41(1): 56–64. DOI: 10.1139/cjce-2013-0141.
    [8] LACROIX D. Behaviour of light-frame wood stud walls subjected to blast loading [D]. Ottawa: University of Ottawa, 2013. DOI: 10.20381/ruor-3105.
    [9] VIAU C, DOUDAK G. Investigating the behavior of light-frame wood stud walls subjected to severe blast loading [J]. Journal of Structural Engineering, 2016, 142(12): 04016138. DOI: 10.1061/(ASCE)ST.1943-541X.0001622.
    [10] VIAU C, DOUDAK G. Investigating the behaviour of typical and designed wall-to-floor connections in light-frame wood stud wall structures subjected to blast loading [J]. Canadian Journal of Civil Engineering, 2016, 43(6): 562–572. DOI: 10.1139/cjce-2015-0452.
    [11] MOURÃO R, CAÇOILO A, TEIXEIRA-DIAS F, et al. Blast resistance of timber structural elements: a state-of-the-art review [J]. International Journal of Protective Structures, 2023, 14(2): 263–295. DOI: 10.1177/20414196221092466.
    [12] QUAYYUM S. Refined parametric models for wind load resistances of wood-frame walls [J]. Engineering Structures, 2019, 183: 841–859. DOI: 10.1016/j.engstruct.2019.01.058.
    [13] 祝恩淳, 陈志勇, 陈永康, 等. 轻型木结构剪力墙抗侧力性能试验与有限元分析 [J]. 哈尔滨工业大学学报, 2010, 42(10): 1548–1554. DOI: 10.11918/j.issn.0367-6234.2010.10.007.

    ZHU E C, CHEN Z Y, CHEN Y K, et al. Testing and FE modeling of lateral resistance of shearwalls in light wood frame structures [J]. Journal of Harbin Institute of Technology, 2010, 42(10): 1548–1554. DOI: 10.11918/j.issn.0367-6234.2010.10.007.
    [14] BULLEIT W M, PANG W C, ROSOWSKY D V. Modeling wood walls subjected to combined transverse and axial loads [J]. Journal of Structural Engineering, 2005, 131(5): 781–793. DOI: 10.1061/(ASCE)0733-9445(2005)131:5(781).
    [15] LACROIX D N, DOUDAK G. Investigation of dynamic increase factors in light-frame wood stud walls subjected to out-of-plane blast loading [J]. Journal of Structural Engineering, 2015, 141(6): 04014159. DOI: 10.1061/(ASCE)ST.1943-541X.0001139.
    [16] Canadian Standards Association. CSA O86 Engineering design in wood [S]. Toronto: CSA Group, 2024.
    [17] MI H. Behavior of unblocked wood shearwalls [D]. Fredericton: University of New Brunswick, 2004.
    [18] MCCUTCHEON W J. Stiffness of framing members with partial composite action [J]. Journal of Structural Engineering, 1986, 112(7): 1623–1637. DOI: 10.1061/(ASCE)0733-9445(1986)112:7(1623).
    [19] American Standard for Testing Methods. ASTM D1761 Standard test methods for mechanical fasteners in wood [S]. West Conshocken: ASTM International, 2012.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  26
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-01
  • 修回日期:  2025-01-13
  • 网络出版日期:  2025-01-14

目录

    /

    返回文章
    返回