• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

NiP@Fe-SBA-15抑爆剂的制备及对PP粉尘爆燃火焰的抑制机理

王菲 韩金 陈金射 陈海燕 张延松 羊阳 张阳 朱玉镇

王菲, 韩金, 陈金射, 陈海燕, 张延松, 羊阳, 张阳, 朱玉镇. NiP@Fe-SBA-15抑爆剂的制备及对PP粉尘爆燃火焰的抑制机理[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0434
引用本文: 王菲, 韩金, 陈金射, 陈海燕, 张延松, 羊阳, 张阳, 朱玉镇. NiP@Fe-SBA-15抑爆剂的制备及对PP粉尘爆燃火焰的抑制机理[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0434
WANG Fei, HAN Jin, CHEN Jinshe, CHEN Haiyan, ZHANG Yansong, YANG Yang, ZHANG Yang, ZHU Yuzhen. Preparation of NiP@Fe-SBA-15 suppressant and its inhibition mechanism on PP dust deflagration flames[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0434
Citation: WANG Fei, HAN Jin, CHEN Jinshe, CHEN Haiyan, ZHANG Yansong, YANG Yang, ZHANG Yang, ZHU Yuzhen. Preparation of NiP@Fe-SBA-15 suppressant and its inhibition mechanism on PP dust deflagration flames[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0434

NiP@Fe-SBA-15抑爆剂的制备及对PP粉尘爆燃火焰的抑制机理

doi: 10.11883/bzycj-2024-0434
基金项目: 国家自然科学基金(52374215,51974179)
详细信息
    作者简介:

    王 菲(1999- ),女,硕士研究生,wangf9903@163.com

    通讯作者:

    陈金射(1985- ),男,博士,副教授,skd1643@sdust.edu.cn

  • 中图分类号: O383; X932

Preparation of NiP@Fe-SBA-15 suppressant and its inhibition mechanism on PP dust deflagration flames

  • 摘要: 抑爆剂在防止粉尘爆炸事故中起着至关重要的作用。通过原位合成方法制备了一种新型的NiP@Fe-SBA-15抑爆剂,采用哈特曼管道爆炸测试系统,对爆燃火焰的传播行为进行实验研究,测定NiP@Fe-SBA-15抑爆剂对聚丙烯(PP)爆炸火焰的抑制作用,以及添加不同比例的NiP@Fe-SBA-15抑爆剂对PP爆炸火焰的抑制效果。实验结果表明:NiP@Fe-SBA-15抑爆剂能够显著降低PP粉尘爆燃火焰的温度和燃烧速度,当添加质量分数为70%的NiP@Fe-SBA-15时,基本实现了对PP爆燃火焰的高效抑制。此外,结合爆炸产物的实验分析结果,提出了NiP@Fe-SBA-15对PP粉尘爆燃的物理和化学抑制机制。
  • 图  1  哈特曼管道爆炸测试系统示意图

    Figure  1.  Schematic diagram of the Hartmann tube explosion testing system

    1. Control valve ignition generator; 2. Quartz glass tube; 3. Electrode; 4. High-speed camera; 5. Computer; 6. Solenoid valve; 7. Air storage chamber; 8. Barometer 1; 9. Intake valve 1; 10. Barometer 2; 11. Intake valve 2; 12. High-pressure air tank

    图  2  PP粉尘粒度分布图及SEM图

    Figure  2.  PP dust size distribution diagram and SEM diagram

    图  3  NiP@Fe-SBA-15的SEM-Mapping测试

    Figure  3.  SEM Mapping of NiP@Fe-SBA-15

    图  4  SBA-15和NiP@Fe-SBA-15的粒径分布

    Figure  4.  Particle size distribution of SBA-15 and NiP@Fe-SBA-15

    图  5  NiP@Fe-SBA-15的 N2吸附-脱附等温曲线及孔径分布图

    Figure  5.  Isothermal curve of N2 adsorption-desorption and pore size distribution of NiP@Fe-SBA-15

    图  6  不同浓度抑爆粉体作用下400 g/m3PP粉尘爆炸火焰结构

    Figure  6.  Flame structure of 400 g/m³ PP dust explosion with different concentrations of explosion suppression powder

    图  7  SBA-15及NiP@Fe-SBA-15抑爆剂对PP粉尘爆燃火焰传播抑制性能对比

    Figure  7.  Comparison of inhibition properties of SBA-15 and NiP@Fe-SBA-15 on deflagrant flame propagation of PP dust

    图  8  PP粉尘与抑爆剂混合物的火焰前沿位置

    Figure  8.  Flame front position of mixture of PP dust and explosion suppressant

    图  9  不同浓度抑爆剂粉体对PP粉尘火焰平均传播速度的影响

    Figure  9.  Effect of explosion suppressant powder concentration on the average flame propagation velocity of PP dust

    图  10  PP、PP产物、抑爆剂及混合爆炸产物的FTIR图像

    Figure  10.  FTIR images of PP, PP products, explosion suppressors and mixed explosive products

    图  11  添加抑爆剂前PP爆炸产物SEM图

    Figure  11.  SEM Image of PP Explosion Products Before Adding Explosion Suppressant

    图  12  添加抑爆剂后爆炸产物SEM图

    Figure  12.  SEM image of explosion products after adding explosion suppressant

    图  13  NiP@Fe-SBA-15对PP粉尘爆炸的抑制机理图

    Figure  13.  Schematic diagram of the inhibition mechanism of NiP@Fe-SBA-15 on PP dust explosion

    表  1  NiP@Fe-SBA-15的结构参数

    Table  1.   Structural parameters of NiP@Fe-SBA-15

    材料 比表面积/(m2·g−1) 孔容/(mL·g−1) 孔径/nm
    NiP@Fe-SBA-15 262.5751 0.3594 4.6823
    下载: 导出CSV
  • [1] 左前明, 程卫民, 汤家轩. 粉体抑爆剂在煤矿应用研究的现状与展望 [J]. 煤炭技术, 2010, 29(11): 78–80.

    ZUO Q M, CHENG W M, TANG J X. Current status and prospects of application and research of powder coal mine explosion suppression agent [J]. Coal Technology, 2010, 29(11): 78–80.
    [2] 林晨迪. 不同抑爆粉体对聚乙烯粉尘爆炸的抑制作用研究 [D]. 焦作: 河南理工大学, 2020. DOI: 10.27116/d.cnki.gjzgc.2020.000223.

    LIN C D. Investigation into the suppression effect of different powders on explosion of polyethylene dust [D]. Jiaozuo: Henan Polytechnic University, 2020. DOI: 10.27116/d.cnki.gjzgc.2020.000223.
    [3] 敖万路, 吴书杭, 邢璐, 等. 二次回收PP无纺布条单螺杆挤出技术研究 [J]. 模具工业, 2024, 50(2): 60–63. DOI: 10.16787/j.cnki.1001-2168.dmi.2024.02.012.

    AO W L, WU S H, XING L, et al. Research on single screw extrusion technology for secondary recovery of PP non-woven fabric strip [J]. Die & Mould Industry, 2024, 50(2): 60–63. DOI: 10.16787/j.cnki.1001-2168.dmi.2024.02.012.
    [4] WANG S X, MUIRURI J K, SOO X Y D, et al. Bio-polypropylene and polypropylene-based biocomposites: solutions for a sustainable future [J]. Chemistry-An Asian Journal, 2023, 18(2): e202200972. DOI: 10.1002/asia.202200972.
    [5] ZHANG S L, YAN X, WEN Z, et al. Study on flame propagation characteristic and mechanism of polypropylene dust explosion [J]. Powder Technology, 2024, 440: 119794. DOI: 10.1016/j.powtec.2024.119794.
    [6] ABBASI M R, SHAMIRI A, HUSSAIN M A. Dynamic modeling and molecular weight distribution of ethylene copolymerization in an industrial gas-phase fluidized-bed reactor [J]. Advanced Powder Technology, 2016, 27(4): 1526–1538. DOI: 10.1016/j.apt.2016.05.014.
    [7] LI C, ZHANG C T, GHOLIZADEH M, et al. Different reaction behaviours of light or heavy density polyethylene during the pyrolysis with biochar as the catalyst [J]. Journal of Hazardous Materials, 2020, 399: 123075. DOI: 10.1016/j.jhazmat.2020.123075.
    [8] 张延松, 李南, 郭瑞, 等. 月桂酸与硬脂酸粉尘爆炸过程热解动力学与火焰传播特性关系 [J]. 爆炸与冲击, 2022, 42(7): 075402. DOI: 10.11883/bzycj-2021-0470.

    ZHANG Y S, LI N, GUO R, et al. Relationship between pyrolysis kinetics and flame propagation characteristics of lauric acid and stearic acid dust explosion [J]. Explosion and Shock Waves, 2022, 42(7): 075402. DOI: 10.11883/bzycj-2021-0470.
    [9] ZHANG C B, JIN P G, CHEN C F, et al. Flame propagation characteristics and surface functional groups changes of corn starch dust during the combustion process [J]. Powder Technology, 2023, 430: 118995. DOI: 10.1016/j.powtec.2023.118995.
    [10] LI Y D, MENG X B, SONG S Z M, et al. Piperazine pyrophosphate-functionalized Ni-MOF metal framework: fabrication and synergistic explosion suppression mechanisms [J]. Chemical Engineering Journal, 2024, 499: 155870. DOI: 10.1016/j.cej.2024.155870.
    [11] NAN F, LUO Z M, CHENG F M, et al. Research progress and development trends of hydrogen explosion suppression materials and mechanisms [J]. Process Safety and Environmental Protection, 2024, 184: 1318–1331. DOI: 10.1016/j.psep.2024.02.062.
    [12] VAN WINGERDEN M, SKJOLD T, ROOSENDANS D, et al. Chemical inhibition of hydrogen-air explosions: literature review, simulations and experiments [J]. Process Safety and Environmental Protection, 2023, 176: 1120–1129. DOI: 10.1016/j.psep.2023.03.042.
    [13] 贾海林, 项海军, 李第辉, 等. 含NaCl超细水雾对不同阻塞率管道内爆炸的抑制 [J]. 爆炸与冲击, 2020, 40(4): 34–43. DOI: 10.11883/bzycj-2019-0268.

    JIA H L, XIANG H J, LI D H, et al. Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride [J]. Explosion and Shock Waves, 2020, 40(4): 34–43. DOI: 10.11883/bzycj-2019-0268.
    [14] 马冉. LDPE粉尘爆炸特性及惰化研究 [D]. 北京: 北京石油化工学院, 2018.

    MA R. Study on dust explosion characteristics and inertion of LDPE [D]. Beijing: Beijing Institute of Petrochemical Technology, 2018.
    [15] WANG Z, MENG X B, YAN K, et al. Study on the inhibition of Al-Mg alloy dust explosion by modified Mg(OH)2 [J]. Powder Technology, 2021, 384: 284–296. DOI: 10.1016/j.powtec.2021.02.037.
    [16] ZHANG P P, ZHOU Y H, CAO X Y, et al. Mitigation of methane/air explosion in a closed vessel by ultrafine water fog [J]. Safety Science, 2014, 62: 1–7. DOI: 10.1016/j.ssci.2013.07.027.
    [17] 郝峥, 许开立, 张毓媛, 等. Al(OH)3对聚丙烯腈粉火焰传播特性影响研究 [J]. 爆炸与冲击, 2022, 42(6): 147–157. DOI: 10.11883/bzycj-2021-0322.

    HAO Z, XU K L, ZHANG Y Y, et al. Study on the effect of Al(OH)3 on the flame propagation characteristics of polyacrylonitrile powder [J]. Explosion and Shock Waves, 2022, 42(6): 147–157. DOI: 10.11883/bzycj-2021-0322.
    [18] 王燕, 何佳, 杨晶晶, 等. 草酸盐和碳酸氢盐抑制聚乙烯粉尘爆炸特性 [J]. 化工学报, 2022, 73(9): 4207–4216. DOI: 10.11949/0438-1157.20220790.

    WANG Y, HE J, YANG J J, et al. Inhibition of polyethylene dust explosion by oxalate and bicarbonate [J]. CIESC Journal, 2022, 73(9): 4207–4216. DOI: 10.11949/0438-1157.20220790.
    [19] YANG J, YU Y, LI Y H, et al. Inerting effects of ammonium polyphosphate on explosion characteristics of polypropylene dust [J]. Process Safety and Environmental Protection, 2019, 130: 221–230. DOI: 10.1016/j.psep.2019.08.015.
    [20] 王保, 江丙友, 苏明清, 等. 三聚氰胺聚磷酸盐抑制聚丙烯粉尘爆炸研究 [J]. 消防科学与技术, 2022, 41(3): 291–295. DOI: 10.3969/j.issn.1009-0029.2022.03.001.

    WANG B, JIANG B Y, SU M Q, et al. Research on suppression of polypropylene dust explosion by melamine polyphosphate [J]. Fire Science and Technology, 2022, 41(3): 291–295. DOI: 10.3969/j.issn.1009-0029.2022.03.001.
    [21] WEI L J, SU M Q, WANG K, et al. Suppression effects of ABC powder on explosion characteristics of hybrid C2H4/polyethylene dust [J]. Fuel, 2022, 310: 122159. DOI: 10.1016/j.fuel.2021.122159.
    [22] ZHANG Y S, PAN Z C, YANG J J, et al. Study on the suppression mechanism of (NH4)2CO3 and SiC for polyethylene deflagration based on flame propagation and experimental analysis [J]. Powder Technology, 2022, 399: 117193. DOI: 10.1016/j.powtec.2022.117193.
    [23] YU Y, LI Y H, ZHANG Q W, et al. Experimental investigation of the inerting effect of crystalline Ⅱ type Ammonium Polyphosphate on explosion characteristics of micron-size Acrylates Copolymer dust [J]. Journal of Hazardous Materials, 2018, 344: 558–565. DOI: 10.1016/j.jhazmat.2017.10.060.
    [24] SHAH P, RAMASWAMY V. Thermal stability of mesoporous SBA-15 and Sn-SBA-15 molecular sieves: an in situ HTXRD study [J]. Microporous and Mesoporous Materials, 2008, 114(1/2/3): 270–280. DOI: 10.1016/j.micromeso.2008.01.013.
    [25] PARLETT C M A, ARANDIYAN H, DURNDELL L J, et al. Continuous-flow synthesis of mesoporous SBA-15 [J]. Microporous and Mesoporous Materials, 2022, 329: 111535. DOI: 10.1016/j.micromeso.2021.111535.
    [26] 桑净净, 赵君华, 李玲, 等. 不同制备条件对SBA-15介孔氧化硅的形貌、比表面积和孔径分布的影响 [J]. 化学工程师, 2011, 25(12): 1–5. DOI: 10.3969/j.issn.1002-1124.2011.12.001.

    SANG J J, ZHAO J H, LI L, et al. Effect of preparation conditions on the morphology, surface area and pore size distribution of mesoporous SBA-15 [J]. Chemical Engineer, 2011, 25(12): 1–5. DOI: 10.3969/j.issn.1002-1124.2011.12.001.
    [27] 牛振江, 吴廷华, 李则林. 化学镀镍-高磷合金晶化行为的现场XRD研究 [J]. 物理化学学报, 2003, 19(8): 705–708. DOI: 10.3866/PKU.WHXB20030806.

    NIU Z J, WU T H, LI Z L. In situ XRD investigation on the crystallization behaviors of electroless high-phosphorous Ni-P alloys [J]. Acta Physico-Chimica Sinica, 2003, 19(8): 705–708. DOI: 10.3866/PKU.WHXB20030806.
    [28] WANG B, HUANG X, ZHU Z B, et al. Hydrothermal synthesis of nano nickel phosphides and investigation of their thermal stability [J]. International Journal of Materials Research, 2013, 104(5): 507–510. DOI: 10.3139/146.110890.
    [29] MALAKAR M, SHUKLA P K. Effects of boron/nitrogen/phosphorus doping on the scavenging action of armchair single-walled carbon nanotubes (armchair-SWCNT) for OH radicals: a DFT study [J]. Carbon Letters, 2023, 33(1): 99–113. DOI: 10.1007/s42823-022-00407-w.
    [30] POON K C, WAN W Y, SU H B, et al. One-minute synthesis via electroless reduction of amorphous phosphorus-doped graphene for oxygen reduction reaction [J]. ACS Applied Energy Materials, 2021, 4(6): 5388–5391. DOI: 10.1021/acsaem.1c01075.
    [31] LIU J Y, WANG L, GAO J C, et al. Inhibition mechanism of metal barrier explosion-proof materials on ethane explosion [J]. Materials Chemistry and Physics, 2024, 312: 128652. DOI: 10.1016/j.matchemphys.2023.128652.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  10
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-04
  • 修回日期:  2025-01-15
  • 网络出版日期:  2025-01-16

目录

    /

    返回文章
    返回