• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

3种典型聚能装药对水中双层间隔靶的侵彻特性研究

张雪梅 谢兴博 钟明寿 顾文彬 赵长啸

张雪梅, 谢兴博, 钟明寿, 顾文彬, 赵长啸. 3种典型聚能装药对水中双层间隔靶的侵彻特性研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0455
引用本文: 张雪梅, 谢兴博, 钟明寿, 顾文彬, 赵长啸. 3种典型聚能装药对水中双层间隔靶的侵彻特性研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0455
ZHANG Xuemei, XIE Xingbo, ZHONG Mingshou, GU Wenbin, ZHAO Changxiao. On penetration characteristics of three typical shaped charges into double-layer spaced targets in water[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0455
Citation: ZHANG Xuemei, XIE Xingbo, ZHONG Mingshou, GU Wenbin, ZHAO Changxiao. On penetration characteristics of three typical shaped charges into double-layer spaced targets in water[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0455

3种典型聚能装药对水中双层间隔靶的侵彻特性研究

doi: 10.11883/bzycj-2024-0455
基金项目: 国家自然科学基金(12072372和12102479);陆军工程大学科技创新项目(KYGYZB002201)
详细信息
    作者简介:

    张雪梅(1980- ),女,博士研究生,高级工程师,meixueyitian@163.com

    通讯作者:

    钟明寿(1983- ),男,博士,副教授,109125659@qq.com

  • 中图分类号: O383

On penetration characteristics of three typical shaped charges into double-layer spaced targets in water

  • 摘要: 为了选择适合水中大距离非接触性侵彻毁伤的聚能装药结构,针对爆炸成型弹丸(explosively formed projectile, EFP)、杆式射流(jetting projectile charge, JPC)、聚能射流(shaped charge jet, SCJ)3种典型聚能装药结构,开展了不同侵彻体入水前、着靶前、穿靶后的速度测试及对水中双层间隔靶的侵彻试验。建立了靶前水介质长度在0~100 cm时的水中侵彻数值计算模型,分析了靶前水介质长度对聚能装药水中毁伤元时序特性、水中前向冲击波压力峰值、水中侵彻速度及水中双层间隔靶侵彻性能的影响。结果表明:3种聚能装药侵彻水中间隔靶时,前向冲击波均先于侵彻体到达靶板。随着水介质长度的增大,前靶板处的前向冲击波压力峰值呈线性下降,后靶板处的前向冲击波压力峰值呈非线性下降;EFP、JPC和SCJ速度呈非线性下降,其SCJ靶前速度约是JPC的2倍。在靶前水介质长度不大于25 cm时,EFP在前靶板上形成的最大穿孔直径达到了5 cm,是JPC穿孔直径的1.3倍,是SCJ穿孔直径的3倍;在靶前水介质长度不大于100 cm时,JPC和SCJ对双层间隔靶具有较好的侵彻效果,且JPC的侵彻性能要优于SCJ。
  • 图  1  3种聚能装药

    Figure  1.  Three types of shaped charges

    图  2  3种聚能装药结构

    Figure  2.  Three types of shaped charge structures

    图  3  空气中侵彻试验

    Figure  3.  Penetration test in air

    图  4  水中侵彻试验

    Figure  4.  Penetration test in water

    图  5  构件布设位置

    Figure  5.  Component layout

    图  6  双层测速网靶

    Figure  6.  Double-layer velocity measurement network targets

    图  7  EFP在水中的反射压力曲线(H = 20 cm)

    Figure  7.  Reflective pressure curves of EFP in water (H = 20 cm)

    图  8  JPC在水中的反射压力曲线(H = 45 cm)

    Figure  8.  Reflection pressure curves of JPC in water (H = 45 cm)

    图  9  SCJ在水中的反射压力曲线(H = 45 cm)

    Figure  9.  Reflection pressure curves of SCJ in water (H = 45 cm)

    图  10  SCJ聚能装药在各测点的电压信号曲线(H = 20 cm)

    Figure  10.  Voltage signal curves of SCJ shaped charge at each measuring point (H = 20 cm)

    图  11  JPC聚能装药在各测点的电压信号曲线(H = 20 cm)

    Figure  11.  Voltage signal curves of JPC shaped charge at each measuring point (H = 20 cm)

    图  12  SCJ聚能装药在各测点的电压信号曲线(H = 20 cm)

    Figure  12.  Voltage signal curves of SCJ shaped charge at each measuring point (H = 20 cm)

    图  13  3种聚能装药在不同长度水介质中的穿靶效果

    Figure  13.  Penetration effect of three shaped charges in water media with different lengths

    图  14  数值计算模型

    Figure  14.  Numerical calculation model

    图  15  聚能装药速度数值模拟与实验结果对比(H = 20cm)

    Figure  15.  Comparison of numerical simulation and experimental results of shaped charge velocity (H = 20 cm)

    图  16  EFP前向冲击波的压力云图和压力时程(H = 20 cm)

    Figure  16.  Pressure contours of EFP forward shock wave and pressure peak-time histories (H = 20 cm)

    图  17  JPC前向冲击波的压力云图和压力时程(H = 45 cm)

    Figure  17.  Pressure contours of JPC forward shock wave and pressure peak-time histories (H = 45 cm)

    图  18  SCJ前向冲击波的压力云图和压力峰值(H=45 cm)

    Figure  18.  Pressure contours of SCJ forward shock wave and pressure peak-time histories (H = 45 cm)

    图  19  前靶板处侵彻体的滞后距离

    Figure  19.  Lag distance of the penetrator at the front target plate

    图  20  后靶板处侵彻体的滞后距离

    Figure  20.  Lag distance of the penetrator at the rear target plate

    图  21  聚能装药侵彻水中双层靶板时前向冲击波压力峰值的变化(H = 20 cm)

    Figure  21.  Variation of forward shock wave pressure peak during the shaped charge penetrating into the double-layer target plate in water (H = 20cm)

    图  22  聚能装药前向冲击着靶前的压力峰值变化

    Figure  22.  Variation of the pressure peak of the forward shock wave at target plates

    图  23  聚能装药在空气和水介质中的速度变化曲线

    Figure  23.  Velocity curves of shaped charge in air and water

    图  24  前靶板处侵彻体速度

    Figure  24.  Penetration velocity at the front target

    图  25  后靶板处侵彻体速度

    Figure  25.  Penetration velocity at the rear target

    图  26  3种聚能装药对不同水介质长度中双层靶板的侵彻过程

    Figure  26.  Penetration processes of three shaped charges into double-layer target plates at different water medium lengths

    图  27  聚能装药对水中双层间隔靶的毁伤性能

    Figure  27.  Damage performance of shaped charge to double-layer spaced target in water

    表  1  聚能装药侵彻体在不同介质中的侵彻速度

    Table  1.   Penetration velocity of shaped charge penetrator in different media

    装药类型 F/cm 入水前(测点A H/cm 着靶前(测点B 穿靶后(测点C η3/%
    Δt0/μs v0/(m·s−1) Δt1/μs v1/(m·s−1) η1/% Δt2/μs v2/(m·s−1) η2/%
    SCJ3565833208.5411829.419.5368410.5336.84
    4510.0350040.0011.031829.0945.44
    JPC35938892012.5280028.0014.0250010.7135.71
    4515.0233340.0116.021876.2643.76
    EFP351131822018.0194438.8925.0140028.0056.00
    4532.0109465.6359.059345.7981.36
    下载: 导出CSV

    表  2  3种聚能装药对水中双层靶的的侵彻效果

    Table  2.   Penetration effect of three kinds of shaped charge on double-layer target in water

    装药类型 F/cm H/cm 前靶板 后靶板
    入口尺寸/cm 出口尺寸/cm 穿靶效果 入口尺寸/cm 出口尺寸/cm 穿靶效果
    EFP 35 20 ϕ5.0 ϕ5.2 穿透
    JPC 35 45 4.0×3.5 5.0×3.8 穿透 ϕ2.3 ϕ2.3 穿透
    100 ϕ2.3 ϕ2.3 穿透 ϕ1.0 ϕ1.0 穿透
    SCJ 35 45 3.6×1.6 3.2×1.5 穿透 ϕ1.2 ϕ1.2 穿透
    100 ϕ1.1 ϕ1.1 穿透 ϕ0.8 ϕ0.8 穿透
    下载: 导出CSV

    表  3  炸药材料参数[18]

    Table  3.   Material parameters of JH-2 explosive[18]

    材料 ρ/(g·cm−3) A/GPa B/GPa R1 R2 ω E0/GPa
    JH-2 1.7 56.4 6.801 4.1 1.3 0.36 10
    下载: 导出CSV

    表  4  空气、水材料参数[19]

    Table  4.   Air and water material parameters[19]

    材料 ρ/(kg·m−3) C/(m·s−1) S1 S2 S3 ω V0
    空气 1.25 344 1.4 0
    1.02×103 1647 2.56 1.986 1.23 0.5 1
    下载: 导出CSV

    表  5  金属材料参数[21-22]

    Table  5.   Metal material parameters[21-22]

    材料 ρ/(g·cm−3) A/MPa B/MPa n C m Tm/K Tr/K
    紫铜 8.96 90 292 0.31 0.025 1.09 1 356 293
    45钢 7.80 507 320 0.28 0.064 1.06 1 795 300
    D1 D2 D3 D4 D5
    0.1 0.76 1.57 0.005 0.84
    下载: 导出CSV

    表  6  靶板毁伤效果数值模拟值与实验值对比

    Table  6.   Comparison of numerical simulation values and experimental measurements of damage effect of target plate

    装药类型 H/cm d1 d2
    数值模拟值/cm 实验平均值/cm 误差/% 数值模拟值/cm 实验平均值/cm 误差/%
    EFP 20 4.90 5.00 −2.00
    JPC 45 3.60 3.65 −1.37 2.35 2.3 2.17
    SCJ 45 1.50 1.55 −3.22 1.18 1.20 −1.67
    下载: 导出CSV
  • [1] HUANG X, MAO J W, LI Q, et al. On the interaction between the underwater explosion and the double-layer structure with an orifice on the outer plate [J]. Ocean Engineering, 2024, 306: 118050. DOI: 10.1016/j.oceaneng.2024.118050.
    [2] XU L Y, TIAN Y, LIU X B, et al. Numerical investigation on jet penetration capacity of hypervelocity shaped charge in underwater explosion [J]. Ocean Engineering, 2023, 281: 114668. DOI: 10.1016/j.oceaneng.2023.[2]114668.
    [3] 姬祥, 明付仁, 张梁. 水下聚能金属射流载荷特性及毁伤效应研究 [J]. 舰船科学技术, 2024, 46(1): 15–20. DOI: 10.3404/j.issn.1672-7649.2024.01.003.

    JI X, MING F R, ZHANG L. Research on load characteristics and damage effect of underwater shaped metal jet [J]. Ship Science and Technology, 2024, 46(1): 15–20. DOI: 10.3404/j.issn.1672-7649.2024.01.003.
    [4] 梁争峰, 胡焕性. 爆炸成形弹丸技术现状与发展 [J]. 火炸药学报, 2004, 27(4): 21–25. DOI: 10.14077/j.issn.1007-7812.2004.04.006.

    LIANG Z F, HU H X. The Current situation and future development direction of explosively formed projectile technology [J]. Chinese Journal of Explosives and Propellants, 2004, 27(4): 21–25. DOI: 10.14077/j.issn.1007-7812.2004.04.006.
    [5] 徐斌, 王成, 徐文龙. 高速杆式射流形成的数值模拟与实验研究 [J]. 北京理工大学学报, 2018, 38(4): 331–337. DOI: 10.15918/j.tbit1001-0645.2018.04.001.

    XU B, WANG C, XU W L. Numerical simulation and experiment investigation on hypervelocity jetting projectile charge formation [J]. Transactions of Beijing Institute of Technology, 2018, 38(4): 331–337. DOI: 10.15918/j.tbit1001-0645.2018.04.001.
    [6] 王利侠, 谷鸿平, 丁刚, 等. 聚能射流对带壳浇注PBX装药的撞击响应 [J]. 含能材料, 2015, 23(11): 1067–1072. DOI: 10.11943/j.issn.1006-9941.2015.11.006.

    WANG L X, GU H P, DING G, et al. Reaction characteristics for shelled cast-cured PBX explosive impacted by shaped charge jet [J]. Chinese Journal of Energetic Materials, 2015, 23(11): 1067–1072. DOI: 10.11943/j.issn.1006-9941.2015.11.006.
    [7] 王雅君, 李伟兵, 王晓鸣, 等. EFP水中飞行特性及侵彻间隔靶的仿真与试验研究 [J]. 含能材料, 2017, 25(6): 459–465. DOI: 10.11943/j.issn.1006-9941.2017.06.003.

    WANG Y J, LI W B, WANG X M, et al. Numerical simulation and experimental study on flight characteristics and penetration against spaced targets of EFP in water [J]. Chinese Journal of Energetic Materials, 2017, 25(6): 459–465. DOI: 10.11943/j.issn.1006-9941.2017.06.003.
    [8] 张雪梅, 谢兴博, 顾文彬, 等. 球缺型EFP在不同介质中的成型形态及侵彻性能研究 [J]. 兵器装备工程学报, 2024, 45(10): 189–198. DOI: 10.11809/bqzbgcxb2024.10.024.

    ZHANG X M, XIE X B, GU W B, et al. Study on the forming morphology and penetration performance of spherical-defect EFP in different media [J]. Journal of Ordnance Equipment Engineering, 2024, 45(10): 189–198. DOI: 10.11809/bqzbgcxb2024.10.024.
    [9] 孙远翔, 胡皓亮, 张之凡. EFP水下成型影响因素的数值模拟 [J]. 高压物理学报, 2020, 34(6): 065104. DOI: 10.11858/gywlxb.20200557.

    SUN Y X, HU H L, ZHANG Z F. Simulation study on influential factors of EFP underwater forming [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065104. DOI: 10.11858/gywlxb.20200557.
    [10] 王海福, 江增荣, 俞为民, 等. 杆式射流装药水下作用行为研究 [J]. 北京理工大学学报, 2006, 26(3): 189–192. DOI: 10.3969/j.issn.1001-0645.2006.03.001.

    WANG H F, JIANG Z R, YU W M, et al. Behavior of jetting penetrator charge operating underwater [J]. Transactions of Beijing Institute of Technology, 2006, 26(3): 189–192. DOI: 10.3969/j.issn.1001-0645.2006.03.001.
    [11] 蒋文灿, 程祥珍, 梁斌, 等. 一种组合药型罩聚能装药战斗部对含水复合结构毁伤的数值模拟及试验研究 [J]. 爆炸与冲击, 2022, 42(8): 083303. DOI: 10.11883/bzycj-2021-0389.

    JIANG W C, CHENG X Z, LIANG B, et al. Numerical simulation and experimental study on the damage of water partitioned structure by a shaped charge warhead with a combined charge liner [J]. Explosion and Shock Waves, 2022, 42(8): 083303. DOI: 10.11883/bzycj-2021-0389.
    [12] 张向荣, 黄风雷. 炸高对钨铜射流空气及水中侵彻的影响 [J]. 北京理工大学学报, 2011, 31(3): 262–264. DOI: 10.15918/j.tbit1001-0645.2011.03.003.

    ZHANG X R, HUANG F L. Effects of standoff on the penetration of WCu-pseudo-alloy shaped charges in the air and water [J]. Transactions of Beijing Institute of Technology, 2011, 31(3): 262–264. DOI: 10.15918/j.tbit1001-0645.2011.03.003.
    [13] 陈冬梅, 陈智刚, 侯秀成, 等. 三类聚能侵彻体鱼雷战斗部对目标毁伤数值模拟 [J]. 弹箭与制导学报, 2012, 32(2): 110–113. DOI: 10.15892/j.cnki.djzdxb.2012.02.047.

    CHEN D M, CHEN Z G, HOU X C, et al. The simulation on target damage of three shaped-charge penetrators torpedo warheads [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(2): 110–113. DOI: 10.15892/j.cnki.djzdxb.2012.02.047.
    [14] 周迪锋, 唐娟, 赖建云. 水下聚能爆破技术研究 [J]. 四川兵工学报, 2013, 34(2): 45–47. DOI: 10.11809/scbgxb2013.02.014.

    ZHOU D F, TANG J, LAI J Y. Research of shaped underwater blasting technology [J]. Journal of Ordnance Equipment Engineering, 2013, 34(2): 45–47. DOI: 10.11809/scbgxb2013.02.014.
    [15] 李明星, 王志军, 伊建亚, 等. 不同聚能装药水下作用效果的对比分析 [J]. 兵器材料科学与工程, 2017, 40(5): 95–99. DOI: 10.14024/j.cnki.1004-244x.20170911.002.

    LI M X, WANG Z J, YI J Y, et al. Comparative analysis of underwater effect for different shaped charge [J]. Ordnance Material Science and Engineering, 2017, 40(5): 95–99. DOI: 10.14024/j.cnki.1004-244x.20170911.002.
    [16] 王长利, 马坤, 周刚, 等. 防雷舱结构在聚能装药水下爆炸作用下的毁伤研究 [J]. 爆炸与冲击, 2018, 38(5): 1145–1154. DOI: 10.11883/bzycj-2017-0119.

    WANG C L, MA K, ZHOU G, et al. Damage effect of cabin near shipboard under shaped charge exploding underwater [J]. Explosion and Shock Waves, 2018, 38(5): 1145–1154. DOI: 10.11883/bzycj-2017-0119.
    [17] 侯海量, 张成亮, 李茂, 等. 冲击波和高速破片联合作用下夹芯复合舱壁结构的毁伤特性 [J]. 爆炸与冲击, 2015, 35(1): 116–123. DOI: 10.11883/1001-1455(2015)01-0116-08.

    HOU H L, ZHANG C L, LI M, et al. Damage characteristics of sandwich bulkhead under the impact of shock and high-velocity fragments [J]. Explosion and Shock Waves, 2015, 35(1): 116–123. DOI: 10.11883/1001-1455(2015)01-0116-08.
    [18] 吴晗玲, 段卓平, 汪永庆. 杆式射流形成的数值模拟研究 [J]. 爆炸与冲击, 2006, 26(4): 328–332. DOI: 10.11883/1001-1455(2006)04-0328-05.

    WU H L, DUAN Z P, WANG Y Q. Simulation investigation of rod-like jets [J]. Explosion and Shock Waves, 2006, 26(4): 328–332. DOI: 10.11883/1001-1455(2006)04-0328-05.
    [19] 陈兴, 周兰伟, 李福明, 等. 杆式射流对充液防护结构的毁伤机理及影响因素的数值模拟 [J]. 高压物理学报, 2021, 35(2): 025202. DOI: 10.11858/gywlxb.20200626.

    CHEN X, ZHOU L W, LI F M, et al. Numerical simulation of the damage mechanism and influencing factors of rod jets on liquid-filled protective structures [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 025202. DOI: 10.11858/gywlxb.20200626.
    [20] 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析 [M]. 北京: 清华大学出版社, 2005: 295–296.
    [21] 桂毓林, 于川, 刘仓理, 等. 带尾翼的翻转型爆炸成形弹丸的三维数值模拟 [J]. 爆炸与冲击, 2005, 25(4): 313–318. DOI: 10.11883/1001-1455(2005)04-0313-06.

    GUI Y L, YU C, LIU C L, et al. 3D simulation of over-turned explosively formed projectile (EFP) with star-shaped fins [J]. Explosion and Shock, 2005, 25(4): 313–318. DOI: 10.11883/1001-1455(2005)04-0313-06.
    [22] 陈刚, 陈小伟, 陈忠富, 等. A3钢钝头弹撞击45钢板破坏模式的数值分析 [J]. 爆炸与冲击, 2007, 27(5): 390–397. DOI: 10.11883/1001-1455(2007)05-0390-08.

    CHEN G, CHEN X W, CHEN Z F, et al. Simulations of A3 steel blunt projectiles impacting 45 steel plates [J]. Explosion and Shock Waves, 2007, 27(5): 390–397. DOI: 10.11883/1001-1455(2007)05-0390-08.
  • 加载中
图(27) / 表(6)
计量
  • 文章访问数:  312
  • HTML全文浏览量:  36
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-15
  • 修回日期:  2025-02-27
  • 网络出版日期:  2025-03-04

目录

    /

    返回文章
    返回