Model experimental investigation on the effects of rockburst on gently inclined structural planes under gradient stresses
-
摘要: 深部开挖引起的围岩梯度应力和岩层天然赋存的缓倾硬性结构面是影响岩爆特性的重要因素。借助气液复合加载的岩爆模拟装置,对预制含不同硬性缓倾结构面大尺寸(400 mm×600 mm×1 000 mm)类岩体试件进行了三向加载-单面卸载的应力梯度加卸载岩爆试验,通过数字图像相关(digital image correlation,DIC)、声发射、红外辐射和高速摄影等多种监测手段,研究了含缓倾结构面试件岩爆演化特征及破坏机制。研究结果表明,缓倾结构面的存在对试件的破坏模式有控制性作用,在极大程度上制约了岩爆坑的边界与形态,并加速了岩爆的发生。验证了试件发生岩爆的位置主要分布在试件结构面之间的区域,且该区域的红外辐射值和DIC应变场在破坏之前显著高于卸载面其他位置。随着缓倾结构面倾角的增大,试件声发射峰值能量与累计能量均随之增大,产生剪切破坏占总破坏比例上升,孕育的岩爆烈度增强。研究成果可为深埋高应力地下工程灾害防控与治理提供重要参考。Abstract: The gradient stresses in the surrounding rock caused by deep excavation and the naturally occurring slow-dipping hard structural planes of the rock are critical factors influencing the characteristics of rockburst.Through triaxial loading-unidirectional unloading tests conducted on large-scale (400 mm×600 mm×1 000 mm) artificial rock specimens containing prefabricated hard slow-dipping structural planes using a gas-liquid composite loading rockburst simulation system, this study systematically investigated rockburst evolution mechanisms and mechanisms of damage. A multi-modal monitoring approach incorporating digital image correlation (DIC), acoustic emission (AE) detection, infrared thermography, and high-speed photography was employed to capture critical parameters including energy released patterns, surface infrared radiation characteristics, DIC strain field evolution, and crack propagation dynamics during rockburst development. The results of the study show that the presence of the slow-dipping structural plane has a controlling effect on the damage pattern of the specimen,greatly constrains the boundaries and morphology of rockburst craters, and accelerates the occurrence of rockburst. It is verified that the location of rockbursts in the specimens is mainly in the area between the structural planes of the specimens. The infrared radiation values and DIC strain fields in this area are much higher than those in the rest of the unloading surface before the damage. As the angle of the slow-dipping structural plane increases, the peak and cumulative acoustic emission energy of the specimen increases, the proportion of shear damage to total damage produced increaces, intensity of rockburst spawned increaces. The research results can provide an important reference for the prevention, control and treatment of disasters in deep-buried high-stress underground engineering.
-
表 1 试件模型材料参数
Table 1. Model material parameters
材料名称 泊松比 弹性模量/
GPa单轴抗压
强度/MPa岩爆倾向性Wet 完整模型 0.221 1.268 9.6 9.8 含15°结构面
模型0.274 1.154 7.4 6.5 磷块岩 0.249 22.23 81.9 9.4 表 2 声发射能量参数
Table 2. Parameters of acoustic emission acoustic energy
试件 结构面倾角/(º) 单次最大能量/(mV·μs) 累计能量/(mV·μs) A5 5 1.9×104 2.78×105 A15 15 3.1×104 6.72×105 A25 25 3.9×104 10.80×105 -
[1] 钱七虎. 岩爆、冲击地压的定义、机制、分类及其定量预测模型 [J]. 岩土力学, 2014, 35(1): 1–6. DOI: 10.16285/j.rsm.2014.01.028.QIAN Q H. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump [J]. Rock and Soil Mechanics, 2014, 35(1): 1–6. DOI: 10.16285/j.rsm.2014.01.028. [2] ORTLEPP W D, STACEY T R. Rockburst mechanisms in tunnels and shafts [J]. Tunnelling and Underground Space Technology, 1994, 9(1): 59–65. DOI: 10.1016/0886-7798(94)90010-8. [3] 冯夏庭, 肖亚勋, 丰光亮, 等. 岩爆孕育过程研究 [J]. 岩石力学与工程学报, 2019, 38(4): 649–673. DOI: 10.13722/j.cnki.jrme.2019.0103.FENG X T, XIAO Y X, FENG G L, et al. Study on the development process of rockbursts [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 649–673. DOI: 10.13722/j.cnki.jrme.2019.0103. [4] 周辉, 孟凡震, 张传庆, 等. 结构面剪切破坏特性及其在滑移型岩爆研究中的应用 [J]. 岩石力学与工程学报, 2015, 34(9): 1729–1738. DOI: 10.13722/j.cnki.jrme.2014.0337.ZHOU H, MENG F Z, ZHANG C Q, et al. Characteristics of shear failure of structural plane and slip rockburst [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1729–1738. DOI: 10.13722/j.cnki.jrme.2014.0337. [5] 周辉, 孟凡震, 张传庆, 等. 深埋硬岩隧洞岩爆的结构面作用机制分析 [J]. 岩石力学与工程学报, 2015, 34(4): 720–727. DOI: 10.13722/j.cnki.jrme.2015.04.008.ZHOU H, MENG F Z, ZHANG C Q, et al. Effect of structural plane on rockburst in deep hard rock tunnels [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 720–727. DOI: 10.13722/j.cnki.jrme.2015.04.008. [6] ZHOU H, MENG F Z, ZHANG C Q, et al. Analysis of rockburst mechanisms induced by structural planes in deep tunnels [J]. Bulletin of Engineering Geology and the Environment, 2015, 74(4): 1435–1451. DOI: 10.1007/s10064-014-0696-3. [7] HU L, FENG X T, XIAO Y X, et al. Effects of structural planes on rockburst position with respect to tunnel cross-sections: a case study involving a railway tunnel in China [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(2): 1061–1081. DOI: 10.1007/s10064-019-01593-0. [8] 冯夏庭, 陈炳瑞, 明华军, 等. 深埋隧洞岩爆孕育规律与机制: 即时型岩爆 [J]. 岩石力学与工程学报, 2012, 31(3): 433–444. DOI: 10.3969/j.issn.1000-6915.2012.03.001.FENG X T, CHEN B R, MING H J, et al. Evolution law and mechanism of rockbursts in deep tunnels: immediate rockburst [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 433–444. DOI: 10.3969/j.issn.1000-6915.2012.03.001. [9] CHEN B K, ZHANG Z Q, LAN Q N, et al. Experiment study on damage properties and acoustic emission characteristics of layered shale under uniaxial compression [J]. Materials, 2023, 16(12): 4317. DOI: 10.3390/ma16124317. [10] SU G S, YAN X Y, JIANG J Q. Influence of weak dynamic disturbances on rockburst occurring in the borehole containing a small-Scale single structural plane: an experimental study [J]. Rock Mechanics and Rock Engineering, 2024, 57(8): 5997–6030. DOI: 10.1007/s00603-024-03834-5. [11] 李育宗, 袁亮, 张庆贺, 等. 含结构面岩体岩爆特征真三轴试验研究 [J]. 岩石力学与工程学报, 2024, 43(1): 120–132. DOI: 10.13722/j.cnki.jrme.2023.0133.LI Y Z, YUAN L, ZHANG Q H, et al. True-triaxial experimental study on the rockburst characteristics of rock mass with a structural plane [J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(1): 120–132. DOI: 10.13722/j.cnki.jrme.2023.0133. [12] 夏元友, 吝曼卿, 廖璐璐, 等. 大尺寸试件岩爆试验碎屑分形特征分析 [J]. 岩石力学与工程学报, 2014, 33(7): 1358–1365. DOI: 10.13722/j.cnki.jrme.2014.07.007.XIA Y Y, LIN M Q, LIAO L L, et al. Fractal characteristic analysis of fragments from rockburst tests of large-diameter specimens [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1358–1365. DOI: 10.13722/j.cnki.jrme.2014.07.007. [13] 祝文化, 马能, 夏元友, 等. 气液复合加载的岩爆模型试验研究 [J]. 岩石力学与工程学报, 2017, 36(1): 159–166. DOI: 10.13722/j.cnki.jrme.2015.1472.ZHU W H, MA N, XIA Y Y, et al. Model tests on rock burst using gas-liquid composite loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 159–166. DOI: 10.13722/j.cnki.jrme.2015.1472. [14] LIU X Q, XIA Y Y, LIN M Q, et al. Experimental study of rockburst under true-triaxial gradient loading conditions [J]. Geomechanics and Engineering, 2019, 18(5): 481–492. DOI: 10.12989/gae.2019.18.5.481. [15] Liu X Q, Wang G, Song L B, et al. Energy evolution in rockburst model under different gradient stress [J]. International Journal of Civil Engineering, 2023, 21(9): 1495–1508. DOI: 10.1007/s40999-023-00834-4. [16] 吝曼卿, 张兰, 刘夕奇, 等. 梯度应力作用下模型试件的岩爆破坏细观分析 [J]. 岩土力学, 2020, 41(9): 2984–2992. DOI: 10.16285/j.rsm.2019.2136.LIN M Q, ZHANG L, LIU X Q, et al. Microscopic analysis of rockburst failure on specimens under gradient stress [J]. Rock and Soil Mechanics, 2020, 41(9): 2984–2992. DOI: 10.16285/j.rsm.2019.2136. [17] 王亚鑫, 夏元友, 黄建, 等. 梯度应力作用下不同中主应力对岩爆影响的模型试验研究 [J]. 岩土力学, 2024, 45(10): 2949–2960. DOI: 10.16285/j.rsm.2023.1890.WANG Y X, XIA Y Y, HUANG J, et al. Model experimental investigation on influence of different intermediate principal stresses on rockburst under gradient stress [J]. Rock and Soil Mechanics, 2024, 45(10): 2949–2960. DOI: 10.16285/j.rsm.2023.1890. [18] 吝曼卿, 胡会平, 梁潇, 等. 大尺寸试件在梯度应力作用下的岩爆孕育声发射特性 [J]. 金属矿山, 2022, 51(3): 71–77. DOI: 10.19614/j.cnki.jsks.202203008.LIN M Q, HU H P, LIANG X, et al. Acoustic emission characteristics of rockburst inoculation of large-size specimen under gradient stress [J]. Metal Mine, 2022, 51(3): 71–77. DOI: 10.19614/j.cnki.jsks.202203008. [19] SINGH A K, SINGH R, MAITI J, et al. Assessment of mining induced stress development over coal pillars during depillaring [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(5): 805–81. DOI: 10.1016/j.ijrmms.2011.04.004. [20] CHENG T, HE M C, LI H R, et al. Experimental investigation on the influence of a single structural plane on rockburst [J]. Tunnelling and Underground Space Technology, 2023, 132: 104914. DOI: 10.1016/j.tust.2022.104914. [21] 苏国韶, 刘鑫锦, 闫召富, 等. 岩爆预警与烈度评价的声音信号分析 [J]. 爆炸与冲击, 2018, 38(4): 716–724. DOI: 10.11883/bzycj-2017-0383.SU G S, LIU X J, YAN Z F, et al. Sound signal analysis for warning and intensity evaluation of rockburst [J]. Explosion and Shock Waves, 2018, 38(4): 716–724. DOI: 10.11883/bzycj-2017-0383. [22] 刘岩鑫, 蒋剑青, 苏国韶, 等. 弱动力扰动对花岗岩圆形隧洞岩爆影响的试验研究 [J]. 爆炸与冲击, 2020, 40(9): 095202. DOI: 10.11883/bzycj-2020-0003.LIU Y X, JIANG J Q, SU G S, et al. Experimental study on influence of weak dynamic disturbance on rockburst of granite in a circular tunnel [J]. Explosion and Shock Waves, 2020, 40(9): 095202. DOI: 10.11883/bzycj-2020-0003. [23] 甘一雄, 吴顺川, 任义, 等. 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究 [J]. 岩土力学, 2020, 41(7): 2324–2332. DOI: 10.16285/j.rsm.2019.1460.GAN Y X, WU S C, REN Y, et al. Evaluation indexes of granite splitting failure based on RA and AF of AE parameters [J]. Rock and Soil Mechanics, 2020, 41(7): 2324–2332. DOI: 10.16285/j.rsm.2019.1460. [24] 刘崇岩, 赵光明, 许文松, 等. 高应力巷道岩爆过程及时空演化规律试验研究 [J]. 煤炭学报, 2020, 45(3): 998–1008. DOI: 10.13225/j.cnki.jccs.sj19.1733.LIU C Y, ZHAO G M, XU W S, et al. Experimental study on rockburst and its spatio-temporal evolution criterion in high stress roadway [J]. Journal of China Coal Society, 2020, 45(3): 998–1008. DOI: 10.13225/j.cnki.jccs.sj19.1733. [25] 毛瑞彪. 声发射实时定位监测岩体压裂破裂演化方法与规律研究 [D]. 太原: 太原理工大学, 2020. DOI: 10.27352/d.cnki.gylgu.2020.002028.MAO R B. Research on the law of fracturing fracture evolution of rock mass by real-time acoustic emission location monitoring [D]. Taiyuan: Taiyuan University of Technology, 2020. DOI: 10.27352/d.cnki.gylgu.2020.002028. [26] 吝曼卿, 高成程, 夏元友, 等. 梯度应力作用下模型试件声发射-红外特征及岩爆孕育演化研究 [J]. 山东科技大学学报(自然科学版), 2022, 41(2): 31–41. DOI: 10.16452/j.cnki.sdkjzk.2022.02.004.LIN M Q, GAO C C, XIA Y Y, et al. Acoustic emission-infrared characteristics of model specimen and evolution of rockburst under gradient stress [J]. Journal of Shandong University of Science and Technology (Natural Science), 2022, 41(2): 31–41. DOI: 10.16452/j.cnki.sdkjzk.2022.02.004. -