• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

K447A合金的高温动态力学性能及本构关系

黄蓉 张欣玥 惠旭龙 白春玉 刘小川 牟让科 李钢 李奎

黄蓉, 张欣玥, 惠旭龙, 白春玉, 刘小川, 牟让科, 李钢, 李奎. K447A合金的高温动态力学性能及本构关系[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0477
引用本文: 黄蓉, 张欣玥, 惠旭龙, 白春玉, 刘小川, 牟让科, 李钢, 李奎. K447A合金的高温动态力学性能及本构关系[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0477
HUANG Rong, ZHANG Xinyue, HUI Xulong, BAI Chunyu, LIU Xiaochuan, MU Rang-ke, LI Gang, LI Kui. High-temperature dynamic mechanical properties and intrinsic relationships of K447A alloy[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0477
Citation: HUANG Rong, ZHANG Xinyue, HUI Xulong, BAI Chunyu, LIU Xiaochuan, MU Rang-ke, LI Gang, LI Kui. High-temperature dynamic mechanical properties and intrinsic relationships of K447A alloy[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0477

K447A合金的高温动态力学性能及本构关系

doi: 10.11883/bzycj-2024-0477
基金项目: 工信部民机专项科研项目
详细信息
    作者简介:

    黄 蓉(2001- ),女,硕士研究生,huangr0911@163.com

    通讯作者:

    牟让科(1966- ),男,博士,研究员,rangkemu@163.com

  • 中图分类号: O347.3; V252

High-temperature dynamic mechanical properties and intrinsic relationships of K447A alloy

  • 摘要: K447A是一种广泛用于航空发动机关键热端部件的镍基高温合金,通过在25~1000 ℃温度范围内进行准静态和高应变率压缩试验,系统研究了K447A高温合金的动态力学性能,并深入剖析了温度和应变率对其塑性流动行为的影响。研究结果表明:K447A合金的塑性变形过程中同时存在应变硬化、热软化和应变率强化现象。随着应变率从准静态增加到5000 s−1,温度敏感指数s逐渐减小,而在800 ℃时,K447A合金在高应变率范围出现反常应力峰。随着温度的升高,应变率敏感因子p逐渐增大;材料内部的微观组织结构受应变率和温度耦合影响,应变率增加会导致晶粒细化,而温度升高会导致材料内部低角晶界占比减少从而出现动态再结晶现象。基于流动应力受温度和应变率耦合影响的考虑,建立了修正的Johnson-Cook(J-C)本构模型,与修正前相比,预测误差从26.36%降低到9.05%。
  • 图  1  引伸计测位移示意图

    Figure  1.  Schematic diagram of displacement measurement by extensometer

    图  2  准静态高温压缩试验装置

    Figure  2.  Quasi-static high-temperature compression testing device

    图  3  高温SHPB装置示意图

    Figure  3.  Schematic diagram of high-temperature SHPB device

    图  4  高温SHPB系统

    Figure  4.  High-temperature SHPB system

    图  5  SHPB高温试验装置

    Figure  5.  High-temperature SHPB testing apparatus

    图  6  准静态压缩试验的真实应力-真实应变曲线

    Figure  6.  True stress-true strain curve from Quasi-Static compression test

    图  7  高应变率压缩试验的真实应力-真实应变曲线

    Figure  7.  True stress-true strain curve from high strain rate compression test

    图  8  K447A合金在3种应变率下不同温度的压缩塑性应力-应变曲线

    Figure  8.  Compression plastic stress-strain curves of K447A alloy at different temperatures under three strain rates

    图  9  K447A合金EBSD分析的BC+GB图

    Figure  9.  BC + GB diagram from EBSD analysis of K447A alloy

    图  10  K447A合金在4种温度下不同应变率的压缩塑性应力-应变曲线

    Figure  10.  Compression plastic stress-strain curves of K447A alloy at different strain rates under four temperatures

    图  11  K447A不同温度下的应变率敏感性

    Figure  11.  Strain rate sensitivity of K447A alloy at different temperatures

    图  12  K447A不同应变率的温度敏感指数

    Figure  12.  Temperature sensitivity index of K447A alloy at different strain rates

    图  13  K447A合金准静态和动态压缩结果图片

    Figure  13.  Images of quasi-static compression results for K447A alloy

    图  14  K447A合金EBSD分析的IPF图

    Figure  14.  IPF map from ebsd analysis of K447A alloy

    图  15  K447A合金EBSD分析的KAM图

    Figure  15.  KAM map from ebsd analysis of K447A alloy

    图  16  J-C本构模型拟合结果与试验结果对比

    Figure  16.  Comparison of J-C constitutive model fitting results with experimental results

    图  17  $ ln{\dot \varepsilon ^*} $与流动应力关系

    Figure  17.  Relationships between $ ln{\dot \varepsilon ^*} $ and flow stress

    图  18  塑性应变为0.1时的流动应力

    Figure  18.  Flow Stress at plastic strain of 0.1

    图  19  2种本构模型拟合结果与试验结果对比

    Figure  19.  Comparison of fitting results of two constitutive models with experimental results

    表  1  K447A合金化学成分(质量分数)[5]

    Table  1.   Chemical composition of K447A alloy (mass fraction)[5] %

    CCrCoWMoTaAlTiHfBZrNi
    0.13~0.178.0~8.89.0~11.09.5~10.50.5~0.82.8~3.35.3~5.70.9~1.21.2~1.60.01~0.020.03~0.08余量
    下载: 导出CSV

    表  2  K447A高温合金压缩试验矩阵

    Table  2.   Experimental matrix for high-temperature compression of K447A Alloy

    应变率/s−1温度/℃
    准静态(0.005)室温、400、600、800、1000
    1000室温、600、800、1000
    5000室温、600、800、1000
    下载: 导出CSV

    表  3  K447A合金J-C修正本构模型参数

    Table  3.   J-C modified constitutive model parameters for K447A alloy

    A/MPa B/MPa n C1 C2 C3 C4 m1 m2 m3
    784.25 2026.43 0.599 1.635e-4 0.5093 0.0295 -0.03 2.04605 0.31807 0.01434
    下载: 导出CSV

    表  4  本构模型与试验结果对比的相对均方根误差结果

    Table  4.   Comparison of relative root mean square errors of pre-experimental results and constitutive models

    应变率/s−1温度/℃$ {\lambda _{{\text{RRMSEK}}}} $/%
    J-C模型修正J-C模型
    准静态室温11.552.57
    4003.945.47
    6009.287.65
    80022.9815.37
    100020.1218.89
    1000室温6.791.61
    60027.842.04
    80044.158.72
    100055.2910.88
    5000室温5.311.98
    60024.7016.66
    80052.3515.45
    100058.3610.33
    下载: 导出CSV
  • [1] 刘阳, 叶洪涛, 张军, 等. 航空用镍基高温合金切削现状研究 [J]. 航空制造技术, 2011, 54(14): 48–51. DOI: 10.16080/j.issn1671-833x.2011.14.014.

    LIU Y, YE H T, ZHANG J, et al. Research on cutting status of Ni-based superalloy in aviation industry [J]. Aeronautical Manufacturing Technology, 2011, 54(14): 48–51. DOI: 10.16080/j.issn1671-833x.2011.14.014.
    [2] YANG G X, XU Y F, JIANG L, et al. High temperature tensile properties and fracture behavior of cast nickel-base K445 superalloy [J]. Progress in Natural Science: Materials International, 2011, 21(5): 418–425. DOI: 10.1016/S1002-0071(12)60078-1.
    [3] CHEN J, ZHOU X Y, WANG W L, et al. A review on fundamental of high entropy alloys with promising high–temperature properties [J]. Journal of Alloys and Compounds, 2018, 760: 15–30. DOI: 10.1016/j.jallcom.2018.05.067.
    [4] EYLON D, FUJISHIRO S, POSTANS P J, et al. High-temperature titanium alloys—a review [J]. JOM, 1984, 36(11): 55–62. DOI: 10.1007/BF03338617.
    [5] 李鹏, 叶雷, 程耀永, 等. K447A镍基高温合金钎焊接头组织及性能 [J]. 焊接, 2016(3): 11–13. DOI: 10.3969/j.issn.1001-1382.2016.03.003.

    LI P, YE L, CHENG Y Y, et al. Microstructures and mechanical properties of K447A nickel-base superalloy brazed joint [J]. Welding & Joining, 2016(3): 11–13. DOI: 10.3969/j.issn.1001-1382.2016.03.003.
    [6] Pan C L, Yao Z H, Ma Y W, et al. Solidification microstructure characteristics and their formation mechanism of K447A nickel-based superalloy for dual-performance blisk [J]. Materials Characterization, 2023, 203: 113155. DOI: 10.1016/j.matchar.2023.113155.
    [7] Zhang Z L, Zhao Y, Shan J G, et al. Influence of heat treatment on microstructures and mechanical properties of K447A cladding layers obtained by laser solid forming [J]. Journal of Alloys and Compounds, 2019, 790: 703–715. DOI: 10.1016/j.jallcom.2019.03.136.
    [8] Zhang Z L, Zhao Y, Shan J G, et al. The role of shot peening on liquation cracking in laser cladding of K447A nickel superalloy powders over its non-weldable cast structure [J]. Materials Science and Engineering: A, 2021, 823: 141678. DOI: 10.1016/j.msea.2021.141678.
    [9] 谷怀鹏, 李相辉, 盖其东, 等. K447A合金的热处理组织和拉伸性能研究 [J]. 铸造, 2014, 63(8): 824–827. DOI: 10.3969/j.issn.1001-4977.2014.08.013.

    GU H P, LI X H, GAI Q D, et al. Study on the heat-treated microstructure and tensile property of K447A alloy [J]. Foundry, 2014, 63(8): 824–827. DOI: 10.3969/j.issn.1001-4977.2014.08.013.
    [10] WANG J J, WANG Z C, HAN Z W, et al. Effect of rejuvenation heat treatment on the microstructure and stress relaxation behavior of nickel-based superalloy with excess hardness [J]. Materials Characterization, 2023, 204: 113189. DOI: 10.1016/j.matchar.2023.113189.
    [11] 焦明木, 宋健民. 一种铸造镍基高温合金显微组织与力学性能研究 [J]. 铸造, 2024, 73(5): 621–625. DOI: 10.3969/j.issn.1001-4977.2024.05.005.

    JIAO M M, SONG J M. Research on microstructure and mechanical properties of casting nickel base superalloy [J]. Foundry, 2024, 73(5): 621–625. DOI: 10.3969/j.issn.1001-4977.2024.05.005.
    [12] Korkmaz M E, Günay M, Verleysen P. Investigation of tensile Johnson-Cook model parameters for Nimonic 80A superalloy [J]. Journal of Alloys and Compounds, 2019, 801: 542–549. DOI: 10.1016/j.jallcom.2019.06.153.
    [13] Liu J, Zheng B L, Zhang K, et al. Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures [J]. International Journal of Impact Engineering, 2019, 126: 160–171. DOI: 10.1016/j.ijimpeng.2018.12.012.
    [14] Wang J J, Hu X Y, Yuan K B, et al. Impact resistance prediction of superalloy honeycomb using modified Johnson–Cook constitutive model and fracture criterion [J]. International Journal of Impact Engineering, 2019, 131: 66–77. DOI: 10.1016/j.ijimpeng.2019.05.001.
    [15] Ugodilinwa N E, Khoshdarregi M, Ojo O A. Analysis and constitutive modeling of high strain rate deformation behavior of Haynes 282 aerospace superalloy [J]. Materials Today Communications, 2019, 20: 100545. DOI: 10.1016/j.mtcomm.2019.100545.
    [16] 陈杰, 杨庆祥, 翟若岱. GH4720Li镍基高温合金高应变率动态力学性能研究 [J]. 信息记录材料, 2020, 21(10): 14–16. DOI: 10.16009/j.cnki.cn13-1295/tq.2020.10.007.

    CHEN J, YANG Q X, ZHAI R D. Study of high strain rate dynamic mechanical properties of GH4720Li nickel-based high temperature alloy [J]. Information Recording Materials, 2020, 21(10): 14–16. DOI: 10.16009/j.cnki.cn13-1295/tq.2020.10.007.
    [17] KUHN H, MEDLIN D. ASM Handbook Volume 8: Mechanical testing and evaluation [M]. Materials Park, OH: ASM International, 2000: 462-476. DOI: 10.31399/asm.hb.v08.9781627081764.
    [18] WANG J J, GUO W G, GAO X S, et al. The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates [J]. International Journal of Plasticity, 2015, 65: 85–107. DOI: 10.1016/j.ijplas.2014.08.017.
    [19] SONG Y, GARCIA-GONZALEZ D, RUSINEK A. Constitutive models for dynamic strain aging in metals: Strain rate and temperature dependences on the flow stress [J]. Materials, 2020, 13(7): 1794. DOI: 10.3390/ma13071794.
    [20] Kumar N, YING Q, NIE X, et al. High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy [J]. Materials & Design, 2015, 86: 598–602. DOI: 10.1016/j.matdes.2015.07.161.
    [21] LEYENS C, PETERS M. Titanium and titanium alloys: Fundamentals and applications [M]. Weinheim: Wiley-VCH, 2003. DOI: 10.1002/3527602119.
    [22] Ma H J, Huang L, Tian Y, et al. Effects of strain rate on dynamic mechanical behavior and microstructure evolution of 5A02-O aluminum alloy [J]. Materials Science and Engineering: A, 2014, 606: 233–239. DOI: 10.1016/j.msea.2014.03.081.
    [23] Khan A S, Meredith C S. Thermo-mechanical response of Al 6061 with and without equal channel angular pressing (ECAP) [J]. International Journal of Plasticity, 2010, 26(2): 189–203. DOI: 10.1016/j.ijplas.2009.07.002.
    [24] 王忠堂, 张士宏, 冯斌. TC11钛合金应变速率和温度敏感系数 [J]. 沈阳理工大学学报, 2009, 28(3): 5–8. DOI: 10.3969/j.issn.1003-1251.2009.03.002.

    WANG Z T, ZHANG S H, FENG B. Strain-rate and temperature sensitivity coefficient for TC11 titanium alloy [J]. Journal of Shenyang Ligong University, 2009, 28(3): 5–8. DOI: 10.3969/j.issn.1003-1251.2009.03.002.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  8
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-04
  • 修回日期:  2025-03-24
  • 网络出版日期:  2025-03-26

目录

    /

    返回文章
    返回