• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

民用飞机加装辅助燃油箱坠撞试验及仿真分析

王嘉琪 汪洋 李琪 吴志斌

王嘉琪, 汪洋, 李琪, 吴志斌. 民用飞机加装辅助燃油箱坠撞试验及仿真分析[J]. 爆炸与冲击, 2025, 45(7): 071421. doi: 10.11883/bzycj-2024-0522
引用本文: 王嘉琪, 汪洋, 李琪, 吴志斌. 民用飞机加装辅助燃油箱坠撞试验及仿真分析[J]. 爆炸与冲击, 2025, 45(7): 071421. doi: 10.11883/bzycj-2024-0522
WANG Jiaqi, WANG Yang, LI Qi, WU Zhibin. Crash tests and simulation analysis for civil aircraft equipped with an auxiliary fuel tank[J]. Explosion And Shock Waves, 2025, 45(7): 071421. doi: 10.11883/bzycj-2024-0522
Citation: WANG Jiaqi, WANG Yang, LI Qi, WU Zhibin. Crash tests and simulation analysis for civil aircraft equipped with an auxiliary fuel tank[J]. Explosion And Shock Waves, 2025, 45(7): 071421. doi: 10.11883/bzycj-2024-0522

民用飞机加装辅助燃油箱坠撞试验及仿真分析

doi: 10.11883/bzycj-2024-0522
基金项目: 国家自然科学基金(U2433203)
详细信息
    作者简介:

    王嘉琪(1994- ),女,硕士,工程师,cixintn@163.com

    通讯作者:

    汪 洋(1988- ),女,硕士,研究员,wangyang3@comac.cc

  • 中图分类号: O389; V271.1

Crash tests and simulation analysis for civil aircraft equipped with an auxiliary fuel tank

  • 摘要: 针对典型民用飞机机身下部结构加装辅助燃油箱,开展了冲击速度为1.53、2.78和5.96 m/s的垂直坠撞试验,研究了辅助燃油箱对机身下部结构的触地冲击响应、结构变形和破坏模式的影响。对比仿真与试验结果,验证了加装辅助燃油箱的机身下部结构有限元模型的有效性,通过仿真分析了垂直坠撞过程中的结构吸能形式。结果表明:在冲击速度为1.53 m/s的工况下,机身下部结构以弹性变形为主,仅有轻微的塑性变形;在冲击速度为2.78 m/s的工况下,机身框、蒙皮及货舱地板T形支撑件以弯曲变形为主,整体结构压缩程度较小,货舱地板T形支撑件与左侧地板滑轨连接失效后翘起,未触及油箱;在冲击速度为5.96 m/s的工况下,机身下部结构压缩变形严重,左侧斜支撑受压发生断裂,辅助燃油箱下沉至货舱地板。仿真的坠撞触地撞击力和典型位置加速度变化趋势与试验结果吻合较好,能有效模拟坠撞过程中结构的变形和破坏情况。仿真结果表明,在加装辅助燃油箱的机身下部结构的坠撞试验中,机身框是主要的变形吸能部件,蒙皮和辅助燃油箱是次要的变形吸能结构;随着辅助燃油箱装油质量的增加,仿真得到的辅助燃油箱和机身下部结构组件的吸收冲击能量增加,破坏更严重。
  • 图  1  试验件装配示意图

    Figure  1.  Assembly diagram of the test specimen

    图  2  典型机身下部结构试验件示意图

    Figure  2.  Schematic diagram of typical fuselage substructure test specimen

    图  3  坠撞试验方案示意图

    Figure  3.  Schematic diagram of crash test scheme

    图  4  试验件加速度传感器位置

    Figure  4.  Acceleration sensor locations on the test specimen

    图  5  试验1~3的冲击速度-时间曲线

    Figure  5.  Impact velocity-time curves of tests 1 to 3

    图  6  试验1~3的触地撞击力-时间曲线

    Figure  6.  Impact force-time curves of tests 1 to 3

    图  7  试验1中上部桁架假件的加速度-时间曲线

    Figure  7.  Acceleration-time curves of the upper truss components of test 1

    图  8  试验2中上部桁架假件的加速度-时间曲线

    Figure  8.  Acceleration-time curves of the upper truss components of test 2

    图  9  试验3中上部桁架假件的加速度-时间曲线

    Figure  9.  Acceleration-time curves of the upper truss components of test 3

    图  10  试验1中坠撞后的结构变形

    Figure  10.  Deformation of the structure after crash in test 1

    图  11  试验2中坠撞后的结构变形

    Figure  11.  Deformation of the structure after crash in test 2

    图  12  试验3中结构的坠撞变形过程

    Figure  12.  Deformation process of the structure during crash test 3

    图  13  试验3中坠撞后的结构变形

    Figure  13.  Deformation of the structure after crash in test 3

    图  14  加装辅助燃油箱机身结构的坠撞有限元模型

    Figure  14.  Finite element model of the fuselage structurewith an auxiliary fuel tank

    图  15  仿真和试验1~3的结构变形结果对比

    Figure  15.  Simulation results of the structural deformation of fuselage with an auxiliary fuel tank from tests 1 to 3

    图  16  仿真和试验1的触地撞击力对比

    Figure  16.  Comparison of the simulationbetween test impact forces for test 1

    图  17  仿真和试验2的触地撞击力对比

    Figure  17.  Comparison of the simulationbetween test impact forces for test 2

    图  18  仿真和试验3的触地撞击力对比

    Figure  18.  Comparison of impact force between simulation and test 3

    图  19  仿真和试验1的加速度对比

    Figure  19.  Comparison of the simulation between test accelerations for test 1

    图  20  仿真和试验2的加速度对比

    Figure  20.  Comparison of acceleration between simulation and test 2

    图  21  仿真和试验3的加速度对比

    Figure  21.  Comparison of acceleration between simulation and test 3

    图  22  试验2的仿真中,各组件的吸能对比

    Figure  22.  Comparison of energy absorption of each component in the simulation of test 2

    图  23  试验3的仿真中,各组件的吸能对比

    Figure  23.  Comparison of energy absorption of each component in the simulation of test 3

    图  24  不同冲击速度下辅助燃油箱吸能和机身下部结构吸能随装油量的变化

    Figure  24.  Energy absorption of the auxiliary fuel tank changing and the lower fuselage structure changingwith fuel mass at different impact velocities

    表  1  机身结构及辅助燃油箱的材料参数

    Table  1.   Material parameters of fuselage structure and auxiliary fuel tank

    材料牌号 密度/(kg·m−3) 弹性模量/GPa 泊松比 屈服强度MPa 硬化模量/MPa 失效应变
    2524-T3 2768 71 0.35 310 759 0.15
    7075-T62 2796 71 0.33 427 744 0.09
    7050-T7451 2823 71 0.33 434 826 0.09
    7050-T76511 2823 71 0.33 469 978 0.07
    15-5PH-固溶-H1025 7833 197 0.27 1000 600 0.12
    下载: 导出CSV

    表  2  不同装油量工况下各组件的吸能分析

    Table  2.   Energy absorption of each component in the case of different oil capacities

    装油量/kg 冲击速度/(m·s−1) 吸能/J 吸能占比/%
    机身下部结构组件 上部桁架 辅助燃油箱 机身下部结构组件 上部桁架 辅助燃油箱
    124 2.78 2432 616 518 68.2 17.3 14.5
    248 2970 507 674 71.5 12.2 16.3
    372 3956 527 826 74.5 9.9 15.6
    496(试验) 5684 596 976 78.3 8.2 13.5
    124 5.96 13929 2062 1231 80.9 12.0 7.1
    248 15483 2329 1768 79.1 11.9 9.0
    372 16789 2649 2393 76.9 12.1 11.0
    496(试验) 18067 2647 3260 74.5 12.1 13.4
    下载: 导出CSV
  • [1] GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety [J]. Progress in Aerospace Sciences, 2018, 98: 106–123. DOI: 10.1016/j.paerosci.2018.03.008.
    [2] 刘小川, 白春玉, 惠旭龙, 等. 民机机身结构耐撞性研究的进展与挑战 [J]. 固体力学学报, 2020, 41(4): 293–323. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2020.035.

    LIU X C, BAI C Y, XI X L, et al. Progress and challenge of research on crashworthiness of civil airplane fuselage structures [J]. Chinese Journal of Solid Mechanics, 2020, 41(4): 293–323. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2020.035.
    [3] 刘小川. 民用飞机坠撞事故研究及启示 [M]. 北京: 航空工业出版社, 2022: 153–183.

    LIU X C. Research and enlightenment on civil aircraft crash accident [M]. Beijing: Aviation Industry Press, 2022: 153–183.
    [4] FASANELLA E L, WIDMAYER E, ROBINSON M P. Structural analysis of the controlled impact demonstration of a jet transport airplane [J]. Journal of Aircraft, 1987, 24(4): 274–280. DOI: 10.2514/3.45437.
    [5] FASANELLA E L, JACKSON K E, JONES Y T, et al. Crash simulation of a Boeing 737 fuselage section vertical drop test [C]//Proceedings of the Third KRASH User’s Conference. 2001.
    [6] FASANELLA E L, JACKSON K E. Crash simulation of a vertical drop test of a B737 fuselage section with auxiliary fuel tank: 23681-0001 [R]. USA: U. S. Army Research Laboratory, Vehicle Technology Center, Langley Research Center, 2002.
    [7] JACKSON K E, FASANELLA E L. Crash simulation of a vertical drop test of a B737 fuselage section with overhead bins and luggage [R]. USA: NASA Langley Technical Report Server, 2001: 22–25.
    [8] HASHEMI S M R, WALTON A C. A systematic approach to aircraft crashworthiness and impact surface material models [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2000, 214(5): 265–280. DOI: 10.1243/0954410001532051.
    [9] KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Summary of vertical drop tests of YS-11 transport fuselage sections: 2003-01-3027 [R]. Montreal: SAE World Aviation Congress, 2003.
    [10] KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Vertical drop test of a transport fuselage section[C]//SAE Technical Paper Series. Warrendale: SAE International 2002: 1–10.
    [11] 朱晓东, 朱广荣. 民机典型机身舱段结构坠撞有限元数值仿真研究 [J]. 振动工程学报, 2008, 21(S1): 28–30.

    ZHU X D, ZHU G R. Crashworthiness simulation of civil aircraft fuselage section [J]. Journal of Vibration Engineering, 2008, 21(S1): 28–30.
    [12] 汪洋, 吴志斌, 刘富. 复合材料货舱地板立柱压溃响应试验 [J]. 复合材料学报, 2020, 37(9): 2200–2206. DOI: 10.13801/j.cnki.fhclxb.20200111.001.

    WANG Y, WU Z B, LIU F. Crush experiment of composite cargo floor stanchions [J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2200–2206. DOI: 10.13801/j.cnki.fhclxb.20200111.001.
    [13] 施萌, 汪洋, 吴志斌, 等. 民机货舱下部复合材料结构抗坠撞吸能特性试验研究 [J]. 复合材料科学与工程, 2021(9): 83–88. DOI: 10.19936/j.cnki.2096-8000.20210928.013.

    SHI M, WANG Y, WU Z B, et al. Study on the anti-crash energy absorption characteristic of composite structure in the sub-cargo structure [J]. Composites Science and Engineering, 2021(9): 83–88. DOI: 10.19936/j.cnki.2096-8000.20210928.013.
    [14] 任毅如, 向锦武, 罗漳平, 等. 客舱地板斜撑杆对民机典型机身段耐撞性能的影响 [J]. 航空学报, 2010, 31(2): 271–276.

    REN Y R, XIANG J W, LUO Z P, et al. Effect of Cabin-floor oblique strut on crashworthiness of typical civil aircraft fuselage section [J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 271–276.
    [15] 郑建强, 向锦武, 罗漳平, 等. 民机机身下部结构耐撞性优化设计 [J]. 航空学报, 2012, 33(4): 640–649. DOI: CNKI:11-1929/V.20111011.1411.006.

    ZHENG J Q, XIANG J W, LUO Z P, et al. Crashworthiness optimization of civil aircraft subfloor structure [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 640–649. DOI: CNKI:11-1929/V.20111011.1411.006.
    [16] 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估 [J]. 航空学报, 2013, 34(9): 2130–2140. DOI: 10.7527/S1000-6893.2013.0182.

    LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2130–2140. DOI: 10.7527/S1000-6893.2013.0182.
    [17] 刘小川, 惠旭龙, 张欣玥, 等. 典型民用飞机全机坠撞实验研究 [J]. 航空学报, 2024, 45(5): 529664. DOI: 10.7527/S1000-6893.2023.29664.

    LIU X C, XI X L, ZHANG X Y, et al. Full-scale crash experimental study of typical civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529664. DOI: 10.7527/S1000-6893.2023.29664.
    [18] 张欣玥, 惠旭龙, 刘小川, 等. 典型金属民机机身结构坠撞特性试验 [J]. 航空学报, 2022, 43(6): 526234. DOI: 10.7527/S1000-6893.2022.26234.

    ZHANG X Y, XI X L, LIU X C, et al. Experimental study on crash characteristics of typical metal civil aircraft fuselage structure [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526234. DOI: 10.7527/S1000-6893.2022.26234.
    [19] 解江, 牟浩蕾, 冯振宇, 等. 大飞机典型货舱下部结构冲击试验及数值模拟 [J]. 航空学报, 2022, 43(6): 525890. DOI: 10.7527/S1000-6893.2021.25890.

    XIE J, MOU H L, FENG Z Y, et al. Impact characteristics of typical sub-cargo structure of large aircraft: tests and numerical simulation [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525890. DOI: 10.7527/S1000-6893.2021.25890.
    [20] 牟浩蕾, 解江, 冯振宇, 等. 大型运输类飞机典型机身框段坠撞特性分析 [J]. 航空学报, 2023, 44(9): 227512. DOI: 10.7527/S1000-6893.2022.27512.

    MOU H L, XIE J, FENG Z Y, et al. Crashworthiness characteristics analysis of typical fuselage section of large transport aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 227512. DOI: 10.7527/S1000-6893.2022.27512.
    [21] 何欢, 陈国平, 张家滨. 带油箱结构的机身框段坠撞仿真分析 [J]. 航空学报, 2008, 29(3): 627–633. DOI: 10.3321/j.issn:1000-6893.2008.03.015.

    HE H, CHEN G P, ZHANG J B. Crash simulation of fuselage section with fuel tank [J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 627–633. DOI: 10.3321/j.issn:1000-6893.2008.03.015.
  • 加载中
图(24) / 表(2)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  17
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-31
  • 修回日期:  2025-05-07
  • 网络出版日期:  2025-05-07
  • 刊出日期:  2025-07-05

目录

    /

    返回文章
    返回