Penetration effectiveness analysis of AGM-183A hypervelocity weapon warhead and design of concrete shield
-
摘要: 随着超高速武器的飞速发展,开展超高速武器战斗部侵彻混凝土遮弹层效能分析对于新建和已建防护结构的设计与安全评估具有重要意义。针对超高速武器战斗部打击普通强度混凝土(normal strength concrete, NSC)、超高性能混凝土(ultra-high performance concrete, UHPC)和刚玉块石混凝土(corundum rubble concrete, CRC)3种典型遮弹层问题,首先,通过对比钢/钨合金弹体侵彻3种靶体试验和数值仿真结果,验证有限元仿真分析方法中数值算法、网格尺寸和材料模型参数取值等的可靠性;然后,基于侵彻深度和弹体残余长度等效的网格过渡策略,建立了适用于原型工况分析的数值仿真分析方法;最后,在Ma为3~8工况下,开展对AGM-183A超高速武器战斗部侵彻3种遮弹层的数值模拟。结果表明:AGM-183A超高速武器战斗部分别以Ma=4、Ma=4和Ma=3侵彻NSC、UHPC和CRC遮弹层的极限侵彻深度为4.26、3.74和1.00 m,侵彻速度继续增大时,弹体弧柱交接处因局部应力集中发生断裂等结构失稳现象导致侵彻效能下降。与常规声速钻地武器战斗部SDB、WDU-43/B和BLU-109/B侵彻爆炸破坏深度相比,AGM-183A侵彻NSC遮弹层的深度分别达到3.2、1.6和1.8倍,侵彻UHPC遮弹层的深度分别达到4.7、2.1和2.2倍,侵彻CRC遮弹层的深度分别达到3.4、1.3和1.5倍。3种遮弹层抗AGM-183A超高速武器战斗部侵彻的建议设计厚度分别为8.01、7.03和1.88 m,UHPC相对NSC遮弹层的抗超高速侵彻能力提升不明显,CRC遮弹层可以有效兼顾抵抗常规声速和超高速战斗部打击,建议设计时优先采用。Abstract: With the rapid development of hypervelocity weapons, analyzing the penetration effectiveness of hypervelocity weapon warheads on concrete shields is significant for the design of newly-built protective structures and the safety evaluation of as-built protective structures. Focusing on the penetration performance of AGM-183A hypervelocity weapon warhead against three typical shields: normal strength concrete (NSC), ultra-high performance concrete (UHPC), and corundum rubble concrete (CRC), firstly, the reliability of the numerical algorithms, mesh size, and material model parameters used in the finite element analysis method was fully validated by comparing the experimental and simulation results of three types of target subjected to penetration of steel/tungsten alloy projectiles. Subsequently, a numerical analysis method for the prototype scenario was established based on a mesh transition strategy equivalent to penetration depth and recovered projectile length. Finally, a series of simulations were conducted for the AGM-183A hypervelocity weapon warhead penetrating the aforementioned three shields at Ma ranging from 3 to 8. The results indicate that: (1) the AGM-183A hypervelocity weapon warhead reaches maximum penetration depth when NSC, UHPC, and CRC shields subjected to penetration at Ma=4, Ma=4, and Ma=3, respectively, with depths of 4.26, 3.74, and 1.00 m. Due to instability phenomena of projectiles, such as fractures at the junction between the head and body caused by local stress concentration, further increases in penetration velocity lead to a decrease in penetration effectiveness; (2) compared with the combined penetration and explosion damage depths of conventional sound speed penetrating warheads SDB, WDU-43/B, and BLU-109/B, the penetration depths induced by AGM-183A into NSC, UHPC, and CRC shields are 3.2, 1.6, and 1.8 times, 4.7, 2.1, and 2.2 times, and 3.4, 1.3, and 1.5 times higher, respectively; (3) the recommended design thicknesses of the three shields against the AGM-183A hypervelocity weapon warhead are 8.01, 7.03, and 1.88 m, respectively. The UHPC shield shows no significant improvement subjected to hypervelocity penetration compared with the NSC shield. Comparatively, the CRC shield is recommended for shield design, which can be effectively subjected to both conventional subsonic and hypervelocity impacts.
-
Key words:
- hypervelocity /
- AGM-183A /
- concrete shield /
- protective design /
- corundum rubble concrete
-
表 1 弹体的JC材料模型参数
Table 1. JC material model parameters of projectile
材料 ρ/(g·cm−3) AJC/MPa BJC/MPa nJC CJC mJC D1JC D2JC D3JC D4JC D5JC 45钢 7.85 380 660 0.4 0.64 1.40 0 0 0 0 0 93W钨合金 17.7 600 1200 0.494 0.81 0.82 1 0 0 0 0 D6A钢 7.85 1420 1018 0.6 0.5 1.07 0.9 0 0 0 0 DT300钢 7.85 792 510 0.26 0.014 1.03 0.05 3.44 −2.12 −0.01 0.61 30CrMnSiNi2MoVE 7.85 1300 2483 0.474 0.09 1.07 0.692 1.581 −3.053 −0.02 2.98 表 2 混凝土的HJC材料模型参数
Table 2. HJC material model parameters of concrete target
材料 fc/MPa AHJC BHJC NHJC SmaxHJC plockHJC/GPa K1HJC/GPa K2HJC/GPa K3HJC/GPa D1HJC D2HJC CHJC NSC 52.5 0.28 1.85 0.84 15 1.21 12 135 698 0.04 1.0 0.006 42.7 0.28 1.85 0.84 15 1.21 12 135 698 0.04 1.0 0.006 UHPC 142 0.3 1.73 0.79 7 3.47 116 −243 506 0.04 1.0 0.005 115 0.3 1.73 0.79 7 3.47 116 −243 506 0.04 1.0 0.005 表 3 回收弹体残余长度对比
Table 3. Comparisons of recovered projectile length
侵彻速度/(m·s−1) 回收弹体残余长度 侵彻速度/(m·s−1) 回收弹体残余长度 试验/mm 模拟/mm 误差/% 试验/mm 模拟/mm 误差/% 510 29.9 28.3 −5.4 1084 21.5 21.2 −1.4 703 28.2 26.3 −6.8 1134 19.2 20.2 5.2 807 26.6 25.4 −4.5 1288 18.9 18.3 −3.2 866 24.4 24.3 −0.4 1332 16.4 17.3 5.5 997 22.1 22.5 1.8 1373 16.8 16.4 −2.4 1016 20.3 22.3 9.9 1457 14.5 16.4 13.1 表 4 刚玉块石与UHPC基体界面参数[23]
Table 4. Interface parameters between corundum rubble and UHPC matrix
NFLS/MPa SFLS/MPa PARAM ERATEN/(MN·mm−1) ERATES/(MN·mm−1) CT2CN CN/(GPa·m−1) 9 27 -2 1 3 0.42 5 ρ/(kg·m−3) G/GPa AJH-2 BJH-2 CJH-2 MJH-2 NJH-2 $ {\dot{\varepsilon }}_{0} $ TJH-2/GPa HEL/GPa pHEL/GPa D1JH-2 D2JH-2 FsJH-2 3800 152 0.88 0.431 0.007 0.6 0.64 1.0 2.62 6.75 3.65 0.0125 1.85 0.6 表 6 3种常规钻地武器战斗部参数
Table 6. Parameters of three conventional earth penetrating warheads
战斗部 直径/mm 总质量/kg 长度/mm 弹壳壁厚/mm 头部曲径比 装药类型 装药质量/kg SDB 152 113 1800 10.8 3 HMX 15.3 WDU-43/B 234 454 2400 41.5 9 HMX 66.7 BLU-109/B 368 874 2510 25.4 3 PBXN-109 238 表 7 4种原型战斗部打击3种遮弹层防护设计厚度
Table 7. Protective design thickness of three shields against four prototype warheads
战斗部 遮弹层 破坏作用 侵彻(爆炸)深度/m 侵彻(爆炸)临界贯穿系数 遮弹层防护设计厚度/m SDB NSC 侵彻爆炸 1.33 1.36 1.81 UHPC 0.79 1.76 1.39 CRC 0.29 1.88 0.55 WDU-43/B NSC 侵彻爆炸 2.7 1.39 3.75 UHPC 1.76 1.58 2.79 CRC 0.78 1.81 1.41 BLU-109/B NSC 侵彻爆炸 2.35 1.74 4.09 UHPC 1.71 1.60 2.72 CRC 0.68 2.17 1.48 AGM-183A NSC 侵彻 4.26 1.88 8.01 UHPC 3.74 1.88 7.03 CRC 1 1.88 1.88 -
[1] 高天运, 马兰, 齐建成. 外军高超声速武器作战及其目标杀伤链构建分析 [J]. 战术导弹技术, 2024(3): 136–147. DOI: 10.16358/j.issn.1009-1300.20230153.GAO T Y, MA L, QI J C. Analysis of combat forms and targeting kill chain of foreign hypersonic weapons [J]. Tactical Missile Technology, 2024(3): 136–147. DOI: 10.16358/j.issn.1009-1300.20230153. [2] 邓国强, 王安宝, 张蒙蒙, 等. “匕首”导弹高速侵爆战斗部毁伤威力推测 [J]. 防护工程, 2022, 44(4): 42–47. DOI: 10.3969/j.issn.1674-1854.2022.04.007.DENG G Q, WANG A B, ZHANG M M, et al. Estimation of damage power of the high-speed penetrating-explosion warhead of Kinzhal missile [J]. Protective Engineering, 2022, 44(4): 42–47. DOI: 10.3969/j.issn.1674-1854.2022.04.007. [3] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F. [4] KONG X Z, WU H, FANG Q, et al. Projectile penetration into mortar targets with a broad range of striking velocities: test and analyses [J]. International Journal of Impact Engineering, 2017, 106: 18–29. DOI: 10.1016/j.ijimpeng.2017.02.022. [5] ZHANG S B, KONG X Z, FANG Q, et al. The maximum penetration depth of hypervelocity projectile penetration into concrete targets: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2023, 181: 104734. DOI: 10.1016/j.ijimpeng.2023.104734. [6] 王可慧, 周刚, 李明, 等. 弹体高速侵彻钢筋混凝土靶试验研究 [J]. 爆炸与冲击, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.WANG K H, ZHOU G, LI M, et al. Experimental research on the mechanism of a high-velocity projectile penetrating into a reinforced concrete target [J]. Explosion and Shock Waves, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463. [7] 钱秉文, 周刚, 李进, 等. 钨合金弹体超高速撞击混凝土靶成坑特性研究 [J]. 北京理工大学学报, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.QIAN B W, ZHOU G, LI J, et al. Study of the crater produced by hypervelocity tungsten alloy projectile into concrete target [J]. Transactions of Beijing Institute of Technology, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004. [8] 钱秉文, 周刚, 李进, 等. 钨合金柱形弹超高速撞击水泥砂浆靶的侵彻深度研究 [J]. 爆炸与冲击, 2019, 39(8): 083301. DOI: 10.11883/bzycj-2019-0141.QIAN B W, ZHOU G, LI J, et al. Penetration depth of hypervelocity tungsten alloy projectile penetrating concrete target [J]. Explosion and Shock Waves, 2019, 39(8): 083301. DOI: 10.11883/bzycj-2019-0141. [9] 钱秉文, 周刚, 李名锐, 等. 弹体材料性能对超高速侵彻深度的影响规律 [J]. 爆炸与冲击, 2024, 44(10): 103302. DOI: 10.11883/bzycj-2022-0310.QIAN B W, ZHOU G, LI M R, et al. Influences of material properties of a projectile on hypervelocity penetration depth [J]. Explosion and Shock Waves, 2024, 44(10): 103302. DOI: 10.11883/bzycj-2022-0310. [10] 钱秉文, 周刚, 李名锐, 等. 高强钢弹体高速侵彻混凝土靶的刚体临界侵彻速度研究 [J]. 爆炸与冲击, 2024, 44(10): 103301. DOI: 10.11883/bzycj-2022-0309.QIAN B W, ZHOU G, LI M R, et al. Rigid-body critical transformation velocity of a high-strength steel projectile penetrating concrete targets at high velocities [J]. Explosion and Shock Waves, 2024, 44(10): 103301. DOI: 10.11883/bzycj-2022-0309. [11] 周刚, 李名锐, 文鹤鸣, 等. 钨合金弹体对混凝土靶的超高速侵彻机理 [J]. 爆炸与冲击, 2021, 41(2): 021407. DOI: 10.11883/bzycj-2020-0304.ZHOU G, LI M R, WEN H M, et al. Mechanism on hypervelocity penetration of a tungsten alloy projectile into a concrete target [J]. Explosion and Shock Waves, 2021, 41(2): 021407. DOI: 10.11883/bzycj-2020-0304. [12] 武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55. DOI: 10.3969/j.issn.1000-1093.2012.01.009.WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55. DOI: 10.3969/j.issn.1000-1093.2012.01.009. [13] WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510- 1320 m/s [J]. Construction and Building Materials, 2015, 74: 188–200. DOI: 10.1016/j.conbuildmat.2014.10.041.[14] 薛建锋, 沈培辉, 王晓鸣. 不同头部形状弹体侵彻混凝土的试验研究 [J]. 兵工自动化, 2016, 35(2): 75–78. DOI: 10.7690/bgzdh.2016.02.019.XUE J F, SHEN P H, WANG X M. An experimental study on projectiles penetrating into concrete targets with different nose shapes [J]. Ordnance Industry Automation, 2016, 35(2): 75–78. DOI: 10.7690/bgzdh.2016.02.019. [15] 周忠彬, 马田, 赵永刚, 等. 不同材料弹体超声速侵彻钢筋混凝土靶的结构破坏对比实验 [J]. 高压物理学报, 2020, 34(2): 025101. DOI: 10.11858/gywlxb.20190841.ZHOU Z B, MA T, ZHAO Y G, et al. Comparative experiment on structural damage of supersonic projectiles with different metal materials penetrating into reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025101. DOI: 10.11858/gywlxb.20190841. [16] 董凯, 江坤, 王浩, 等. 大质量弹丸高速侵彻混凝土质量侵蚀试验研究 [J]. 振动与冲击, 2024, 43(12): 148–155. DOI: 10.13465/j.cnki.jvs.2024.12.017.DONG K, JIANG K, WANG H, et al. An experimental study on mass erosion for high speed and high mass projectile penetrate concrete [J]. Journal of Vibration and Shock, 2024, 43(12): 148–155. DOI: 10.13465/j.cnki.jvs.2024.12.017. [17] 汪斌, 曹仁义, 谭多望. 大质量高速动能弹侵彻钢筋混凝土的实验研究 [J]. 爆炸与冲击, 2013, 33(1): 98–102. DOI: 10.11883/1001-1455(2013)01-0098-05.WANG B, CAO R Y, TAN D W. Experimental study on penetration of reinforced concrete by a high-speed penetrator with large mass [J]. Explosion and Shock Waves, 2013, 33(1): 98–102. DOI: 10.11883/1001-1455(2013)01-0098-05. [18] 邓国强, 杨秀敏. 超高速武器对地打击效应数值仿真 [J]. 科技导报, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010.DENG G Q, YANG X M. Numerical simulation of damage effect of hyper velocity weapon on ground target [J]. Science & Technology Review, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010. [19] 张山豹, 孔祥振, 方秦, 等. 弹体超高速侵彻石灰岩靶体地冲击的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013302. DOI: 10.11883/bzycj-2021-0007.ZHANG S B, KONG X Z, FANG Q, et al. Numerical simulation on ground shock waves induced by hypervelocity penetration of a projectile into a limestone target [J]. Explosion and Shock Waves, 2022, 42(1): 013302. DOI: 10.11883/bzycj-2021-0007. [20] 李争, 刘元雪, 胡明, 等. “上帝之杖”天基动能武器毁伤效应评估 [J]. 振动与冲击, 2016, 35(18): 159–164,180. DOI: 10.13465/j.cnki.jvs.2016.14.026.LI Z, LIU Y X, HU M, et al. Damage effect evaluation of God stick space-based kinetic energy weapons [J]. Journal of Vibration and Shock, 2016, 35(18): 159–164,180. DOI: 10.13465/j.cnki.jvs.2016.14.026. [21] 程月华, 周飞, 吴昊. 抗战斗部侵彻爆炸作用的混凝土遮弹层设计 [J]. 爆炸与冲击, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.CHENG Y H, ZHOU F, WU H. Design of concrete shield against the combination of penetration and explosion of warheads [J]. Explosion and Shock Waves, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346. [22] 程月华, 吴昊, 岑国华, 等. 侵彻爆炸联合作用下超高性能混凝土遮弹层设计 [J]. 爆炸与冲击, 2025, 45(1): 013301. DOI: 10.11883/bzycj-2024-0061.CHENG Y H, WU H, CEN G H, et al. Design of ultra-high performance concrete shield against combined penetration and explosion of warheads [J]. Explosion and Shock Waves, 2025, 45(1): 013301. DOI: 10.11883/bzycj-2024-0061. [23] 吴昊, 张瑜, 程月华, 等. 典型战斗部侵彻爆炸下块石混凝土的遮弹层设计 [J]. 爆炸与冲击, 2025, 45(4): 043302. DOI: 10.11883/bzycj-2024-0136.WU H, ZHANG Y, CHENG Y H, et al. Design of rock-rubble concrete shield against the combination of penetration and explosion of warheads [J]. Explosion and Shock Waves, 2025, 45(4): 043302. DOI: 10.11883/bzycj-2024-0136. [24] 吴昊, 岑国华, 程月华, 等. 基于战斗部侵彻动爆一体化效应的遮弹层设计 [J]. 爆炸与冲击, 2025, 45(5): 053301. DOI: 10.11883/bzycj-2024-0244.WU H, CEN G H, CHENG Y H, et al. Design of shield based on integrated effect of penetration and moving charge explosion of warheads [J]. Explosion and Shock Waves, 2025, 45(5): 053301. DOI: 10.11883/bzycj-2024-0244. [25] 钱秉文, 周刚, 陈春林, 等. 超高速撞击条件下混凝土靶体内应力波的测量和分析 [J]. 爆炸与冲击, 2025, 45(5): 054101. DOI: 10.11883/bzycj-2024-0181.QIAN B W, ZHOU G, CHEN C L, et al. Measurement and analysis of stress waves in concrete target under hypervelocity impact [J]. Explosion and Shock Waves, 2025, 45(5): 054101. DOI: 10.11883/bzycj-2024-0181. [26] WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC [J]. International Journal of Impact Engineering, 2015, 84: 38–53. DOI: 10.1016/j.ijimpeng.2015.05.007. [27] 曾宏刚, 廖孟豪. 美国AGM-183A机载高超声速助推滑翔导弹技术方案及主要性能研判 [J]. 飞航导弹, 2020(6): 20–22, 34. DOI: 10.16338/j.issn.1009-1319.20200826. [28] 石浩天. 超高速侵彻战斗部装药结构设计与安定性试验研究 [D]. 太原: 中北大学, 2024: 28–32. DOI: 10.27470/d.cnki.ghbgc.2024.001548.SHI H T. Structural design and stability test of ultra-high velocity penetrating combatant charge [D]. Taiyuan: North University of China, 2024: 28–32. DOI: 10.27470/d.cnki.ghbgc.2024.001548. [29] 唐德高, 贺虎成, 陈向欣, 等. 刚玉块石混凝土抗弹丸侵彻效应试验研究 [J]. 振动与冲击, 2005, 24(6): 37–39. DOI: 10.3969/j.issn.1000-3835.2005.06.011.TANG D G, HE H C, CHEN X X, et al. Experimental study on corundum-rubble concrete against projectile [J]. Journal of Vibration and Shock, 2005, 24(6): 37–39. DOI: 10.3969/j.issn.1000-3835.2005.06.011. [30] 唐曾智, 郭东, 侯晓峰, 等. 超高强堆石混凝土抗侵彻性能研究 [J]. 防护工程, 2024, 46(4): 9–12. DOI: 10.3969/j.issn.1674-1854.2024.04.003.TANG Z Z, GUO D, HOU X F, et al. Research on penetration resistance of ultra-high strength rock-filled concrete [J]. Protective Engineering, 2024, 46(4): 9–12. DOI: 10.3969/j.issn.1674-1854.2024.04.003. [31] 位国旭, 崔浩, 周昊, 等. 钨合金弹丸侵彻钢靶的数值模拟方法 [J]. 爆炸与冲击, 2025, 45(8): 084202. DOI: 10.11883/bzycj-2024-0147.WEI G X, CUI H, ZHOU H, et al. Numerical simulation method for tungsten alloy projectile penetration into steel target [J]. Explosion and Shock Waves, 2025, 45(8): 084202. DOI: 10.11883/bzycj-2024-0147. [32] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. The Hague: International Ballistics Society, 1983: 541–547. [33] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9. [34] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C]//Proceedings of the 14th International Symposium on Ballistics. Québec City: American Defense Preparedness Association, 1993: 591–600. [35] 任根茂, 吴昊, 方秦, 等. 普通混凝土HJC本构模型参数确定 [J]. 振动与冲击, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.14.002.REN G M, WU H, FANG Q, et al. Determinations of HJC constitutive model parameters for normal strength concrete [J]. Journal of Vibration and Shock, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.14.002. [36] REN G M, WU H, FANG Q, et al. Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses [J]. Construction and Building Materials, 2016, 113: 1–14. DOI: 10.1016/j.conbuildmat.2016.02.227. [37] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. DOI: 10.1063/1.46199. [38] 方秦, 罗曼, 张锦华, 等. 弹体侵彻刚玉块石混凝土复合靶体的数值分析 [J]. 爆炸与冲击, 2015, 35(4): 489–495. DOI: 10.11883/1001-1455(2015)04-0489-07.FANG Q, LUO M, ZHANG J H, et al. Numerical analysis of the projectile penetration into the target of corundum-rubble concrete composite overlay [J]. Explosion and Shock Waves, 2015, 35(4): 489–495. DOI: 10.11883/1001-1455(2015)04-0489-07. [39] 贺虎成, 刘晓华, 唐德高. 弹体冲击效应试验的数值模拟分析 [J]. 振动与冲击, 2007, 26(11): 91–94. DOI: 10.13465/j.cnki.jvs.2007.11.030.HE H C, LIU X H, TANG D G. Numerical simulation of impact effect experiment of projectiles [J]. Journal of Vibration and Shock, 2007, 26(11): 91–94. DOI: 10.13465/j.cnki.jvs.2007.11.030. [40] 陈刚, 陈忠富, 陶俊林, 等. 45钢动态塑性本构参量与验证 [J]. 爆炸与冲击, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06.CHEN G, CHEN Z F, TAO J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel [J]. Explosion and Shock Waves, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06. [41] 马坤, 李名锐, 陈春林, 等. 修正金属本构模型在超高速撞击模拟中的应用 [J]. 爆炸与冲击, 2022, 42(9): 091406. DOI: 10.11883/bzycj-2021-0315.MA K, LI M R, CHEN C L, et al. The application of a modified constitutive model of metals in the simulation of hypervelocity impact [J]. Explosion and Shock Waves, 2022, 42(9): 091406. DOI: 10.11883/bzycj-2021-0315. [42] 林远志, 侯海量. 平头圆柱装药弹体静态爆炸破碎与飞散特性 [J]. 海军工程大学学报, 2025, 37(1): 20–28. DOI: 10.7495/j.issn.1009-3486.2025.01.004.LIN Y Z, HOU H L. Exploration of explosive fragmentation and dispersion characteristics of static flat-headed cylindrical charge projectile [J]. Journal of Naval University of Engineering., 2025, 37(1): 20–28. DOI: 10.7495/j.issn.1009-3486.2025.01.004. [43] CHENG Y H, WU H, JIANG P F, et al. Ballistic resistance of high-strength armor steel against ogive-nosed projectile impact [J]. Thin-Walled Structures, 2023, 183: 110350. DOI: 10.1016/j.tws.2022.110350. [44] MCINTOSH G. The Johnson-Holmquist ceramic model as used in LS-DYNA2D: DREV-TM-9822 [R]. Valcartier: Defence Research Establishment Valcartier, 1998. [45] GAZONAS G A. Implementation of the Johnson-Holmquist Ⅱ (JH-2) constitutive model into DYNA3D: ARL-TR-2699 [R]. Aberdeen Proving Ground: Army Research Laboratory, 2002. [46] 王可慧, 耿宝刚, 初哲, 等. 弹体高速侵彻钢筋混凝土靶的结构变形及质量损失的实验研究 [J]. 高压物理学报, 2014, 28(1): 61–68. DOI: 10.11858/gywlxb.2014.01.010.WANG K H, GENG B G, CHU Z, et al. Experimental studies on structural response and mass loss of high-velocity projectiles penetrating into reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 61–68. DOI: 10.11858/gywlxb.2014.01.010. [47] 韩明海, 刘闯, 李鹏程, 等. 弹体高速侵彻花岗岩靶体的结构响应特性 [J]. 爆炸与冲击, 2025, 45(1): 013302. DOI: 10.11883/bzycj-2024-0145.HAN M H, LIU C, LI P C, et al. A study on structural response characteristics of projectile penetrating on granite target [J]. Explosion and Shock Waves, 2025, 45(1): 013302. DOI: 10.11883/bzycj-2024-0145. -


下载: